rumpk/core/kernel.nim

612 lines
23 KiB
Nim

# SPDX-License-Identifier: LSL-1.0
# Copyright (c) 2026 Markus Maiwald
# Stewardship: Self Sovereign Society Foundation
#
# This file is part of the Nexus Sovereign Core.
# See legal/LICENSE_SOVEREIGN.md for license terms.
# Nexus Sovereign Core: Kernel Implementation
# target Bravo: Complete Build Unification
import ring, fiber, ion, sched, pty, cspace, ontology, channels
import fs/vfs, fs/tar, fs/sfs
import loader/elf
import ../libs/membrane/term
import ../libs/membrane/libc as libc_impl
const
MAX_WORKERS* = 8
MAX_FIBER_STACK* = 128 * 1024
SYSTABLE_BASE* = 0x83000000'u64
# --- EXTERNAL SYMBOLS ---
proc ion_get_phys(id: uint16): uint64 {.importc, cdecl.}
proc ion_alloc_raw*(out_id: ptr uint16): uint64 {.importc, cdecl.}
proc ion_free_raw*(id: uint16) {.importc, cdecl.}
proc virtio_blk_read(sector: uint64, buf: ptr byte) {.importc, cdecl.}
proc virtio_blk_write(sector: uint64, buf: ptr byte) {.importc, cdecl.}
proc fb_kern_get_addr(): uint64 {.importc, cdecl.}
proc hal_io_init() {.importc, cdecl.}
proc console_write*(p: pointer, len: csize_t) {.importc, cdecl.}
proc nexshell_main() {.importc, cdecl.}
proc ion_get_virt(id: uint16): uint64 {.importc, cdecl.}
# InitRD Symbols
var initrd_start {.importc: "_initrd_start" .}: byte
var initrd_end {.importc: "_initrd_end" .}: byte
# Globals
var
fiber_ion, fiber_subject, fiber_child, fiber_compositor, fiber_nexshell, fiber_netswitch: FiberObject
stack_ion, stack_subject, stack_child, stack_compositor, stack_nexshell, stack_netswitch: array[MAX_FIBER_STACK, byte]
subject_loading_path: array[64, char] = [ '/', 's', 'y', 's', 'r', 'o', '/', 'b', 'i', 'n', '/', 'm', 'k', 's', 'h', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0' ]
matrix_enabled: bool = false
active_fibers_arr: array[16, ptr FiberObject]
# Trace logic
proc kprint*(s: cstring) {.exportc, cdecl.} =
if s != nil:
var i = 0
let p = cast[ptr UncheckedArray[char]](s)
while p[i] != '\0': i += 1
console_write(cast[pointer](s), csize_t(i))
proc kprintln*(s: cstring) {.exportc, cdecl.} =
kprint(s); kprint("\n")
proc kprint_hex*(val: uint64) {.exportc, cdecl.} =
proc uart_print_hex(val: uint64) {.importc, cdecl.}
uart_print_hex(val)
# ION Unified Memory Manager shim
proc ion_alloc*(): IonPacket =
var id: uint16
let phys = ion_alloc_raw(addr id)
if phys == 0: return IonPacket()
let virt = ion_get_virt(id)
return IonPacket(data: cast[ptr UncheckedArray[byte]](virt), phys: phys, len: 0, id: id)
# Helper: Fiber Sleep
proc fiber_sleep*(ms: uint64) {.exportc, cdecl.} =
let now = sched_get_now_ns()
current_fiber.sleep_until = now + (ms * 1_000_000)
fiber_yield()
proc k_starts_with(s, prefix: cstring): bool =
let ps = cast[ptr UncheckedArray[char]](s)
let pp = cast[ptr UncheckedArray[char]](prefix)
var i = 0
while pp[i] != '\0':
if ps[i] == '\0' or ps[i] != pp[i]: return false
i += 1
return true
proc k_zero_mem(p: pointer, size: uint64) =
var addr_val = cast[uint64](p)
var remaining = size
# 1. Handle unaligned leading bytes
while (addr_val mod 8 != 0) and (remaining > 0):
cast[ptr byte](addr_val)[] = 0
addr_val += 1
remaining -= 1
# 2. Optimized 64-bit stores for the bulk
let count = remaining div 8
if count > 0:
let p64 = cast[ptr UncheckedArray[uint64]](addr_val)
for i in 0 ..< int(count):
p64[i] = 0
addr_val += uint64(count * 8)
remaining -= uint64(count * 8)
# 3. Handle trailing bytes
while remaining > 0:
cast[ptr byte](addr_val)[] = 0
addr_val += 1
remaining -= 1
proc kload_phys(path: cstring, phys_offset: uint64): uint64 =
# The Summoner: Load ELF from VFS into isolated physical memory
let fd = ion_vfs_open(path, 0)
if fd < 0:
kprint("[Loader] Error: Could not open '"); kprint(path); kprintln("'")
return 0
var ehdr: Elf64_Ehdr
if ion_vfs_read(fd, addr ehdr, uint64(sizeof(ehdr))) != int64(sizeof(ehdr)):
kprintln("[Loader] Error: ELF header read failed")
discard ion_vfs_close(fd)
return 0
if ehdr.e_ident[0] != 0x7F or ehdr.e_ident[1] != 'E'.uint8:
kprintln("[Loader] Error: Invalid ELF magic")
discard ion_vfs_close(fd)
return 0
# Programs are at /sysro in the TAR
# We need to skip the /sysro prefix for tar.vfs_read_at
# or better, just use the path as provided but tar.nim expects no leading /
var tar_path = path
if path[0] == '/':
tar_path = cast[cstring](cast[uint64](path) + 1)
if k_starts_with(path, "/sysro"):
tar_path = cast[cstring](cast[uint64](path) + 6)
if tar_path[0] == '/': tar_path = cast[cstring](cast[uint64](tar_path) + 1)
for i in 0 ..< int(ehdr.e_phnum):
var phdr: Elf64_Phdr
let ph_offset = ehdr.e_phoff + uint64(i * int(ehdr.e_phentsize))
if tar.vfs_read_at(tar_path, addr phdr, uint64(sizeof(phdr)), ph_offset) != int64(sizeof(phdr)):
continue
if phdr.p_type == PT_LOAD:
# Enable S-mode access to U-mode pages (SUM=1)
{.emit: """asm volatile ("li t1, 0x40000; csrs sstatus, t1" : : : "t1");""" .}
let dest = cast[ptr UncheckedArray[byte]](phdr.p_vaddr)
if phdr.p_filesz > 0:
if tar.vfs_read_at(tar_path, dest, phdr.p_filesz, phdr.p_offset) != int64(phdr.p_filesz):
kprintln("[Loader] Error: Segment load failed")
if phdr.p_memsz > phdr.p_filesz:
let bss_start = phdr.p_vaddr + phdr.p_filesz
let bss_len = phdr.p_memsz - phdr.p_filesz
kprint(" - Zeroing BSS: VA="); kprint_hex(bss_start); kprint(" Len="); kprint_hex(bss_len); kprintln("")
k_zero_mem(cast[pointer](bss_start), bss_len)
{.emit: """asm volatile ("li t1, 0x40000; csrc sstatus, t1" : : : "t1");""" .}
# ⚡ ARCH-SYNC: Flush I-Cache after loading new code
{.emit: """asm volatile ("fence.i" : : : "memory");""" .}
discard ion_vfs_close(fd)
return ehdr.e_entry
# --- FIBER ENTRIES ---
proc subject_fiber_entry() {.cdecl.} =
let fid = current_fiber.id
kprint("[Subject:"); kprint_hex(fid); kprint("] Fiber Entry reached. PA_Offset="); kprint_hex(current_fiber.phys_offset); kprintln("")
# Use new robust loader
kprint("[Loader:"); kprint_hex(fid); kprint("] Loading: "); kprintln(cast[cstring](addr subject_loading_path[0]))
# Load into Cellular Slot (phys_offset)
let entry_addr = kload_phys(cast[cstring](addr subject_loading_path[0]), current_fiber.phys_offset)
if entry_addr != 0:
kprint("[Subject:"); kprint_hex(fid); kprint("] Entering Payload at: "); kprint_hex(entry_addr); kprintln("")
proc hal_enter_userland(entry, systable, sp: uint64) {.importc, cdecl.}
var sp = current_fiber.user_sp_init
if sp == 0:
# Fallback (Legacy/Init) - Top of the 64MB Sentinel Cell
sp = 0x8BFFFFF0'u64
kprint("[Subject:"); kprint_hex(fid); kprint("] JUMPING to Userland. SP="); kprint_hex(sp); kprintln("")
hal_enter_userland(entry_addr, SYSTABLE_BASE, sp)
else:
kprint("[Subject:"); kprint_hex(fid); kprintln("] Loader failed to find/load payload!")
while true: fiber_sleep(1000)
proc compositor_fiber_entry() {.cdecl.} =
kprintln("[Compositor] Fiber Entry reached.")
while true:
if matrix_enabled:
fiber_sleep(10)
else:
term.term_render()
fiber_sleep(33) # 30Hz
proc mm_create_worker_map(stack_base: uint64, stack_size: uint64, packet_addr: uint64, phys_base: uint64, region_size: uint64): uint64 {.importc, cdecl.}
proc setup_mksh_stack(stack_base: pointer, stack_size: int): uint64 =
var sp = cast[uint64](stack_base) + cast[uint64](stack_size)
sp = sp and not 15'u64 # Align 16
# Term String
let term_str = "TERM=nexus\0"
sp -= uint64(term_str.len)
copyMem(cast[pointer](sp), unsafeAddr term_str[0], term_str.len)
let term_addr = sp
# Path String
let path_str = "/bin/mksh\0"
sp -= uint64(path_str.len)
copyMem(cast[pointer](sp), unsafeAddr path_str[0], path_str.len)
let path_addr = sp
sp = sp and not 15'u64 # Align 16
# Auxv (0, 0)
sp -= 16
cast[ptr uint64](sp)[] = 0
cast[ptr uint64](sp+8)[] = 0
# Envp (term, NULL)
sp -= 16
cast[ptr uint64](sp)[] = term_addr
cast[ptr uint64](sp+8)[] = 0
# Argv (path, NULL)
sp -= 16
cast[ptr uint64](sp)[] = path_addr
cast[ptr uint64](sp+8)[] = 0
# Argc (1)
sp -= 8
cast[ptr uint64](sp)[] = 1
return sp
proc ion_fiber_entry() {.cdecl.} =
kprintln("[ION] Fiber Entry reached.")
while true:
var pkt: CmdPacket
if chan_cmd.recv(pkt):
case CmdType(pkt.kind):
of CMD_SYS_EXIT:
kprintln("[ION] Restarting Subject...")
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], sizeof(stack_subject))
of CMD_ION_FREE:
ion_free_raw(uint16(pkt.arg))
of CMD_GPU_MATRIX:
matrix_enabled = (pkt.arg != 0)
of CMD_SPAWN_FIBER:
# Fiber spawn requested
# Hardcoded for verification to confirm isolation
let target = "/sysro/bin/mksh"
kprint("[ION] Spawning child fiber for: "); kprintln(target)
# Copy into loading path
copyMem(addr subject_loading_path[0], unsafeAddr target[0], target.len + 1)
# Allocate PTY
let pid = pty_alloc()
if pid < 0:
kprintln("[ION] Failed to allocate PTY for child!")
# Re-initialize fiber_child with the requested binary
init_fiber(addr fiber_child, subject_fiber_entry, addr stack_child[0], sizeof(stack_child))
# Phase 40: Set PTY & Stack
fiber_child.pty_id = pid
fiber_child.user_sp_init = setup_mksh_stack(addr stack_child[0], sizeof(stack_child))
# 🏛️ CELLULAR ALLOCATION (SPEC-202 Rev 2)
# Sentinel (Init) takes 0x88000000 - 0x8C000000 (64MB)
# Mksh (First Child) starts in the 'Wild' at 0x8C000000
let cell_base = 0x8C000000'u64
fiber_child.phys_offset = cell_base
# Allocate 64MB Slot for Mksh (Needs >32MB for BSS)
let cell_size = 64 * 1024 * 1024'u64
fiber_child.satp_value = mm_create_worker_map(cast[uint64](addr stack_child[0]), uint64(sizeof(stack_child)), SYSTABLE_BASE, cell_base, cell_size)
kprintln("[ION] Child fiber spawned successfully")
else: discard
fiber_sleep(10)
proc fiber_yield*() {.exportc, cdecl.} =
proc rumpk_yield_guard() {.importc, cdecl.}
rumpk_yield_guard()
proc rumpk_yield_internal*() {.exportc, cdecl.} =
# Switch back to the main dispatcher loop
switch(active_fibers_arr[6])
proc fiber_netswitch_entry() {.cdecl.} =
kprintln("[NetSwitch] Traffic Engine Online")
while true:
var pkt: IonPacket
if chan_netswitch_rx.recv(pkt):
ion_free_raw(pkt.id)
else:
fiber_sleep(2)
fiber_yield()
proc ion_ingress*(id: uint16, len: uint16) {.exportc, cdecl.} =
## Handle packet from Network Driver
let pkt = IonPacket(id: id, len: len)
if not chan_netswitch_rx.send(pkt):
ion_free_raw(id)
proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} =
if chan_input.ring == nil: return
var pkt = ion_alloc()
if pkt.data == nil: return
let to_copy = if int(len) < 2048: int(len) else: 2048
copyMem(pkt.data, p, to_copy)
pkt.len = uint16(to_copy)
if fiber_subject.sleep_until == 0xFFFFFFFFFFFFFFFF'u64: fiber_subject.sleep_until = 0
discard chan_input.send(pkt)
proc k_check_deferred_yield*() {.exportc, cdecl.} =
if current_fiber != nil and current_fiber.wants_yield:
current_fiber.wants_yield = false
fiber_yield()
proc k_handle_exception*(scause, sepc, stval: uint) {.exportc, cdecl.} =
kprint("[IMMUNE] EXCEPTION: scause="); kprint_hex(scause)
kprint(" sepc="); kprint_hex(sepc)
kprint(" stval="); kprint_hex(stval)
kprintln("")
kprintln("[IMMUNE] Fiber HALTING.")
while true: fiber_yield()
proc rumpk_yield_guard() {.cdecl.} =
current_fiber.wants_yield = true
fiber_yield()
proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} =
return ion_vfs_write(fd, buf, count)
# --- SYSCALL HANDLER ---
proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
# if nr != 0x100:
# kprint("[Syscall] NR: "); kprint_hex(nr); kprintln("")
case nr:
of 0x01: # EXIT
var pkt = CmdPacket(kind: uint32(CmdType.CMD_SYS_EXIT), arg: a0)
discard chan_cmd.send(pkt)
current_fiber.wants_yield = true
return 0
of 0x65: # NANOSLEEP
let now = sched_get_now_ns()
current_fiber.sleep_until = now + a0
fiber_yield()
return 0
of 0x100: # YIELD
fiber_yield()
return 0
of 0x200: # OPEN
# return uint(libc_impl.libc_impl_open(cast[cstring](a0), int(a1)))
return 0
of 0x201: # CLOSE
# return uint(libc_impl.libc_impl_close(int(a0)))
return 0
of 0x202: # LIST
return uint(ion_vfs_list(cast[pointer](a0), uint64(a1)))
of 0x203: # READ
var vres = -2
if a0 == 0 or vres == -2:
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
while true:
if pty_has_data_for_slave(pid):
var buf: array[1, byte]
let n = pty_read_slave(PTY_SLAVE_BASE + pid, addr buf[0], 1)
if n > 0:
cast[ptr UncheckedArray[byte]](a1)[0] = buf[0]
return 1
var pkt: IonPacket
if chan_input.recv(pkt):
let n = if uint64(pkt.len) < a2: uint64(pkt.len) else: a2
if n > 0:
# copyMem(cast[pointer](a1), cast[pointer](pkt.data), int(n))
# console_write(pkt.data, csize_t(n))
let data = cast[ptr UncheckedArray[byte]](pkt.data)
for i in 0 ..< int(n): pty_push_input(pid, char(data[i]))
ion_free_raw(pkt.id)
# Loop again to read from PTY
else:
current_fiber.sleep_until = 0xFFFFFFFFFFFFFFFF'u64
fiber_yield()
return uint(vres)
of 0x204: # WRITE
if a0 == 1 or a0 == 2:
console_write(cast[pointer](a1), csize_t(a2))
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
discard pty_write_slave(PTY_SLAVE_BASE + pid, cast[ptr byte](a1), int(a2))
return a2
# var vres = libc_impl.libc_impl_write(int(a0), cast[pointer](a1), uint64(a2))
var vres = -1
return uint(vres)
of 0x205: return 0 # IOCTL stub
of 0x600: # EXECV (Legacy - use SYS_SPAWN_FIBER instead)
# Manual copy path to subject_loading_path
let p = cast[ptr UncheckedArray[char]](a0)
var i = 0
while p[i] != '\0' and i < 63:
subject_loading_path[i] = p[i]
i += 1
subject_loading_path[i] = '\0'
var pkt = CmdPacket(kind: uint32(CmdType.CMD_SYS_EXIT), arg: 0)
discard chan_cmd.send(pkt)
current_fiber.wants_yield = true
return 0
of 0x300: # SYS_SPAWN_FIBER - Spawn new fiber with target binary
# Copy path to subject_loading_path for next spawn
let p = cast[ptr UncheckedArray[char]](a0)
var i = 0
while p[i] != '\0' and i < 63:
subject_loading_path[i] = p[i]
i += 1
subject_loading_path[i] = '\0'
kprint("[Kernel] Spawning fiber for: ")
kprintln(cast[cstring](addr subject_loading_path[0]))
# Re-initialize fiber_subject with new binary
# The ION fiber will pick this up and restart the Subject fiber
var pkt = CmdPacket(kind: uint32(CMD_SPAWN_FIBER), arg: 0)
discard chan_cmd.send(pkt)
# Return fiber ID (always 4 for Subject currently)
return 4
else: return 0
# --- KERNEL BOOT ---
proc ion_wait_multi*(mask: uint64): int32 {.exportc, cdecl.} =
## Block the current fiber until data is available on any of the masked slots
current_fiber.blocked_on_mask = mask
current_fiber.is_blocked = true
fiber_yield()
return 0
proc kmain() {.exportc, cdecl.} =
var next_mmio_addr {.importc: "virtio_pci_next_mmio_addr", nodecl.}: uint32
kprint("\n[Kernel] next_mmio_addr check: ")
kprint_hex(uint64(next_mmio_addr))
kprintln("")
kprintln("\nNexus Sovereign Core v1.1 Starting...")
ion_pool_init()
proc mm_init() {.importc, cdecl.}
proc mm_enable_kernel_paging() {.importc, cdecl.}
mm_init()
mm_enable_kernel_paging()
# Ground Zero Phase 1: Initialize Capability System (SPEC-051)
init_cspace_subsystem()
kprintln("[CSpace] Capability system initialized")
# Ground Zero Phase 2: Initialize System Truth Ledger (SPEC-060)
init_stl_subsystem()
let boot_id = emit_system_boot()
ion_init_input()
hal_io_init()
pty_init()
discard pty_alloc()
term.term_init()
vfs_init(addr initrd_start, addr initrd_end)
vfs_mount_init()
# DEBUG: List Files
kprintln("[VFS] Boot Inventory:")
var buf: array[512, byte]
let n = ion_vfs_list(addr buf[0], 512)
if n > 0:
kprintln(cast[cstring](addr buf[0]))
# Set initial loading path for Init (Subject)
let initial_path = "/sysro/init"
copyMem(addr subject_loading_path[0], unsafeAddr initial_path[0], initial_path.len + 1)
kprint("[ION] Subject Zero Path: "); kprintln(cast[cstring](addr subject_loading_path[0]))
let sys = cast[ptr SysTable](SYSTABLE_BASE)
sys.fn_vfs_open = ion_vfs_open
sys.fn_vfs_read = ion_vfs_read
sys.fn_vfs_list = ion_vfs_list
sys.fn_vfs_write = wrapper_vfs_write
sys.fn_wait_multi = ion_wait_multi
# Shared Rings Setup (SYSTABLE area)
# Layout: 0x0000=SysTable, 0x2000=RX, 0x4000=TX, 0x6000=Event, 0x8000=CMD, 0xA000=Input
# Each ring is ~6KB-8KB, so we need 8KB (0x2000) spacing.
chan_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x2000)
chan_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x4000)
let ring_event = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x6000)
chan_cmd.ring = cast[ptr HAL_Ring[CmdPacket]](SYSTABLE_BASE + 0x8000)
chan_input.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xA000)
# Initialize Shared Memory Rings
chan_rx.ring.mask = 255; chan_tx.ring.mask = 255
ring_event.mask = 255; chan_cmd.ring.mask = 255
chan_input.ring.mask = 255
# Force reset pointers to zero
chan_rx.ring.head = 0; chan_rx.ring.tail = 0
chan_tx.ring.head = 0; chan_tx.ring.tail = 0
ring_event.head = 0; ring_event.tail = 0
chan_cmd.ring.head = 0; chan_cmd.ring.tail = 0
chan_input.ring.head = 0; chan_input.ring.tail = 0
sys.s_rx = chan_rx.ring; sys.s_tx = chan_tx.ring; sys.s_event = ring_event
sys.s_cmd = chan_cmd.ring; sys.s_input = chan_input.ring
sys.magic = 0x4E585553
sys.fb_addr = fb_kern_get_addr()
sys.fb_width = 1920; sys.fb_height = 1080; sys.fb_stride = 1920 * 4; sys.fb_bpp = 32
# Spawn Fibers
fiber_ion.id = 1; fiber_nexshell.id = 2; fiber_compositor.id = 3
fiber_subject.id = 4; fiber_child.id = 5; fiber_netswitch.id = 6
init_fiber(addr fiber_ion, ion_fiber_entry, addr stack_ion[0], sizeof(stack_ion))
let ion_spawn_id = emit_fiber_spawn(1, 0, boot_id) # ION fiber
discard ion_spawn_id
init_fiber(addr fiber_compositor, compositor_fiber_entry, addr stack_compositor[0], sizeof(stack_compositor))
let compositor_spawn_id = emit_fiber_spawn(3, 0, boot_id) # Compositor fiber
discard compositor_spawn_id
init_fiber(addr fiber_nexshell, nexshell_main, addr stack_nexshell[0], sizeof(stack_nexshell))
let shell_spawn_id = emit_fiber_spawn(2, 0, boot_id) # NexShell fiber
init_fiber(addr fiber_netswitch, fiber_netswitch_entry, addr stack_netswitch[0], sizeof(stack_netswitch))
let netswitch_spawn_id = emit_fiber_spawn(6, 0, boot_id) # NetSwitch fiber
discard netswitch_spawn_id
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], sizeof(stack_subject))
let subject_spawn_id = emit_fiber_spawn(4, 0, boot_id) # Subject fiber
# Ground Zero Phase 1: Grant Initial Capabilities (SPEC-051)
# Grant console I/O to NexShell (fiber 2)
discard fiber_grant_channel(2, 0x1000, PERM_READ or PERM_WRITE) # console.input
discard emit_capability_grant(2, 2, 0x1000, 0, shell_spawn_id) # Log event
discard fiber_grant_channel(2, 0x1001, PERM_READ or PERM_WRITE) # console.output
discard emit_capability_grant(2, 2, 0x1001, 1, shell_spawn_id) # Log event
kprintln("[CSpace] Granted console capabilities to NexShell")
# Grant console output to Subject (fiber 4)
discard fiber_grant_channel(4, 0x1001, PERM_WRITE) # console.output (write-only)
discard emit_capability_grant(4, 2, 0x1001, 0, subject_spawn_id) # Log event
kprintln("[CSpace] Granted output capability to Subject")
# Grant Network I/O (RX/TX)
# NetSwitch (Fiber 6): Full access to shuttle packets
discard fiber_grant_channel(6, 0x500, PERM_READ or PERM_WRITE) # CMD_NET_TX
discard fiber_grant_channel(6, 0x501, PERM_READ or PERM_WRITE) # CMD_NET_RX
# Subject (Fiber 4): Needs to READ RX (0x501) and WRITE TX (0x500)
discard fiber_grant_channel(4, 0x500, PERM_WRITE) # Can send packets
discard fiber_grant_channel(4, 0x501, PERM_READ) # Can receive packets
kprintln("[CSpace] Granted network capabilities to NetSwitch and Subject")
# Init (Subject) lives in Cell 0 (0x88000000) - Needs 64MB for large BSS
fiber_subject.phys_offset = 0x88000000'u64
let init_size = 64 * 1024 * 1024'u64
fiber_subject.satp_value = mm_create_worker_map(cast[uint64](addr stack_subject[0]), uint64(sizeof(stack_subject)), SYSTABLE_BASE, fiber_subject.phys_offset, init_size)
# Interrupt Setup
asm "csrsi sstatus, 2"
{.emit: "asm volatile(\"csrs sie, %0\" : : \"r\"(1L << 9));".}
let plic_base = 0x0c000000'u64
cast[ptr uint32](plic_base + 0x2000 + 0x80)[] = (1'u32 shl 10)
cast[ptr uint32](plic_base + 0x201000)[] = 0
cast[ptr uint32](plic_base + 40)[] = 1
active_fibers_arr[0] = addr fiber_ion; active_fibers_arr[1] = addr fiber_nexshell
active_fibers_arr[2] = addr fiber_compositor; active_fibers_arr[3] = addr fiber_netswitch
active_fibers_arr[4] = addr fiber_subject
active_fibers_arr[5] = addr fiber_child
active_fibers_arr[6] = current_fiber
# Set Spectrums (Priorities)
(addr fiber_ion).setSpectrum(Spectrum.Photon)
(addr fiber_compositor).setSpectrum(Spectrum.Photon)
(addr fiber_netswitch).setSpectrum(Spectrum.Photon)
(addr fiber_nexshell).setSpectrum(Spectrum.Matter) # Interactive
(addr fiber_subject).setSpectrum(Spectrum.Void) # Untrusted Background
(addr fiber_child).setSpectrum(Spectrum.Void) # Child process (spawned)
current_fiber.setSpectrum(Spectrum.Void) # Main loop (dispatcher)
# Ground Zero Phase 2: Introspection
stl_print_summary()
kprintln("[Rumpk] Multi-Fiber Dispatcher starting...")
switch(addr fiber_ion)
while true:
if not sched_tick_spectrum(active_fibers_arr.toOpenArray(0, 5)):
# The Silence Doctrine: Wait for Interrupt
let next_wake = sched_get_next_wakeup(active_fibers_arr.toOpenArray(0, 5))
if next_wake != 0xFFFFFFFFFFFFFFFF'u64:
proc sched_arm_timer(ns: uint64) {.importc, cdecl.}
# kprint("[Sleep] "); kprint_hex(next_wake); kprintln("")
sched_arm_timer(next_wake)
asm "csrsi sstatus, 2"
asm "wfi"
# kprintln("[Wake]")