rumpk/core/kernel.nim

670 lines
21 KiB
Nim

# MARKUS MAIWALD (ARCHITECT) | VOXIS FORGE (AI)
# Rumpk Layer 1: The Logic Core (Autonomous Immune System)
{.push stackTrace: off, lineTrace: off.}
import fiber
import ion
import loader
import fs/tar
import fs/sfs
var ion_paused*: bool = false
var pause_start*: uint64 = 0
var matrix_enabled*: bool = false
# --- CORE LOGGING ---
proc console_write(p: pointer, len: csize_t) {.importc, cdecl.}
proc kwrite*(p: pointer, len: csize_t) {.exportc, cdecl.} =
if p != nil and len > 0:
console_write(p, len)
proc kprint*(s: cstring) {.exportc, cdecl.} =
if s != nil:
let length = len(s)
if length > 0:
kwrite(cast[pointer](s), csize_t(length))
proc kprint_hex*(n: uint64) {.exportc, cdecl.} =
const hex_chars = "0123456789ABCDEF"
var buf: array[18, char]
buf[0] = '0'
buf[1] = 'x'
for i in 0..15:
let nibble = (n shr (60 - (i * 4))) and 0xF
buf[i+2] = hex_chars[nibble]
console_write(addr buf[0], 18)
proc kprintln*(s: cstring) {.exportc, cdecl.} =
kprint(s); kprint("\n")
proc write*(fd: cint, p: pointer, len: csize_t): csize_t {.exportc, cdecl.} =
console_write(p, len)
return len
# Wrapper for VFS write to handle stdout/stderr
proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} =
if fd == 1 or fd == 2:
console_write(buf, csize_t(count))
return int64(count)
return ion_vfs_write(fd, buf, count)
# =========================================================
# Fiber Management (Forward Declared)
# =========================================================
var fiber_ion: FiberObject
var fiber_nexshell: FiberObject
var fiber_ui: FiberObject
var fiber_subject: FiberObject
var fiber_watchdog: FiberObject
# Phase 29: Dynamic Worker Pool (The Hive)
const MAX_WORKERS = 8
var worker_pool: array[MAX_WORKERS, FiberObject]
var worker_stacks: array[MAX_WORKERS, array[8192, uint8]]
var worker_active: array[MAX_WORKERS, bool]
var next_worker_id: uint64 = 100 # Start worker IDs at 100
var subject_loading_path: string = "bin/nipbox"
proc subject_fiber_entry() {.cdecl.} =
## The Sovereign Container for Userland Consciousness.
## This loop persists across program reloads.
kprintln("[Subject] Fiber Entry reached.")
while true:
kprint("[Subject] Attempting to load: ")
kprintln(cstring(subject_loading_path))
let entry = kload(subject_loading_path)
if entry != 0:
kprintln("[Subject] Consciousness Transferred.")
rumpk_enter_userland(entry)
else:
kprint("[Subject] Failed to load: ")
kprintln(cstring(subject_loading_path))
kprintln("[Subject] Pausing for Rebirth.")
fiber_yield()
# --- STACK ALLOCATIONS ---
var stack_ion {.align: 16.}: array[4096, uint8]
var stack_nexshell {.align: 16.}: array[4096, uint8]
var stack_ui {.align: 16.}: array[32768, uint8]
var stack_subject {.align: 16.}: array[32768, uint8]
var stack_watchdog {.align: 16.}: array[4096, uint8]
# Phase 31: Memory Manager (The Glass Cage)
proc mm_init() {.importc, cdecl.}
proc mm_enable_kernel_paging() {.importc, cdecl.}
# HAL Framebuffer imports (Phase 26: Visual Cortex)
proc fb_kern_get_addr(): uint64 {.importc, cdecl.}
# --- INITRD SYMBOLS ---
var binary_initrd_tar_start {.importc: "_initrd_start".}: char
var binary_initrd_tar_end {.importc: "_initrd_end".}: char
# =========================================================
# Shared Infrastructure
# =========================================================
const SYSTABLE_BASE = 0x83000000'u64
# Global Rings (The Pipes - L0 Physics)
var guest_rx_hal: HAL_Ring[IonPacket]
var guest_tx_hal: HAL_Ring[IonPacket]
var guest_event_hal: HAL_Ring[IonPacket]
var guest_cmd_hal: HAL_Ring[CmdPacket]
# Shared Channels (The Valves - L1 Logic)
# Shared Channels
var chan_rx*: SovereignChannel[IonPacket]
var chan_tx*: SovereignChannel[IonPacket]
var chan_event*: SovereignChannel[IonPacket]
var chan_cmd*: SovereignChannel[CmdPacket]
# chan_input is now imported from ion.nim!
proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} =
if chan_input.ring == nil:
return
var pkt = ion_alloc()
if pkt.data == nil: return
let to_copy = min(int(len), 2048)
copyMem(pkt.data, p, to_copy)
pkt.len = uint16(to_copy)
chan_input.send(pkt)
proc get_ion_load(): int =
## Calculate load of the Command Ring (The Heartbeat of the NPLs)
let head = guest_cmd_hal.head
let tail = guest_cmd_hal.tail
let mask = guest_cmd_hal.mask
return int((head - tail) and mask)
proc rumpk_yield_internal() {.cdecl, exportc.}
# HAL Driver API
proc hal_io_init() {.importc, cdecl.}
proc virtio_net_poll() {.importc, cdecl.}
proc virtio_net_send(data: pointer, len: uint32) {.importc, cdecl.}
proc virtio_blk_read(sector: uint64, buf: pointer) {.importc, cdecl.}
proc virtio_blk_write(sector: uint64, buf: pointer) {.importc, cdecl.}
proc ion_free_raw(id: uint16) {.importc, cdecl.}
proc nexshell_main() {.importc, cdecl.}
proc ui_fiber_entry() {.importc, cdecl.}
proc get_now_ns(): uint64 =
proc rumpk_timer_now_ns(): uint64 {.importc, cdecl.}
return rumpk_timer_now_ns()
proc fiber_yield*() {.exportc, cdecl.} =
rumpk_yield_internal()
proc fiber_sleep*(ms: int) {.exportc, cdecl.} =
let now = get_now_ns()
current_fiber.sleep_until = now + uint64(ms) * 1000000'u64
fiber_yield()
proc rumpk_yield_internal() {.cdecl, exportc.} =
let load = get_ion_load()
let now = get_now_ns()
# 🏛️ ADAPTIVE GOVERNOR (Phase 3: FLOOD CONTROL) - Temporarily disabled for debugging starvation
# if load > 200:
# if current_fiber != addr fiber_ion:
# switch(addr fiber_ion)
# return
# elif load > 0:
# if current_fiber == addr fiber_subject:
# switch(addr fiber_ion)
# return
# Normal Round Robin logic with Sleep Check
var next_fiber: Fiber = nil
if current_fiber == addr fiber_ion:
next_fiber = addr fiber_nexshell
elif current_fiber == addr fiber_nexshell:
# Phase 33 Debug: Skip UI fiber if problematic
next_fiber = addr fiber_subject
elif current_fiber == addr fiber_subject:
next_fiber = addr fiber_watchdog
else:
next_fiber = addr fiber_ion
# Skip sleeping fibers
var found = false
for _ in 0..5: # Max 5 check to avoid skip all
if next_fiber != nil and now >= next_fiber.sleep_until:
found = true
break
# Move to next in sequence
if next_fiber == addr fiber_ion: next_fiber = addr fiber_nexshell
elif next_fiber == addr fiber_nexshell: next_fiber = addr fiber_subject
elif next_fiber == addr fiber_subject: next_fiber = addr fiber_watchdog
else: next_fiber = addr fiber_ion
# Force found = true for now
found = true
if found and next_fiber != current_fiber:
# Idle loop
# kprint(".")
switch(next_fiber)
elif not found:
asm "csrsi sstatus, 2"
asm "wfi"
# =========================================================
# ION Intelligence Fiber (Core System Supervisor)
# =========================================================
proc ion_fiber_entry() {.cdecl.} =
# kprintln("[ION] Alive")
hal_io_init()
kprintln("[ION] Fiber 1 Reporting for Duty.")
while true:
# 1. Drain Command Channel -> Push to HW
var cmd: CmdPacket
while chan_cmd.recv(cmd):
# Cortex Logic: Dispatch Commands
case cmd.kind:
of uint32(CmdType.CMD_GPU_MATRIX):
let msg = if cmd.arg > 0: "ENGAGE" else: "DISENGAGE"
kprintln("[Kernel] Matrix Protocol: ")
kprintln(cstring(msg))
matrix_enabled = (cmd.arg > 0)
of uint32(CmdType.CMD_SYS_EXIT):
kprint("[Kernel] Subject Exited. Status: ")
kprint_hex(cmd.arg)
kprintln("")
kprintln("[Kernel] Respawning Shell...")
subject_loading_path = "bin/nipbox"
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[
0], stack_subject.len)
of uint32(CmdType.CMD_ION_STOP):
ion_paused = true
pause_start = get_now_ns()
kprintln("[Kernel] ION PAUSED by Watchdog.")
of uint32(CmdType.CMD_ION_START):
ion_paused = false
kprintln("[Kernel] ION RESUMED.")
of uint32(CmdType.CMD_GET_GPU_STATUS):
let msg = if matrix_enabled: "STATUS: Matrix is ONLINE" else: "STATUS: Matrix is OFFLINE"
kprintln("[Kernel] GPU Request")
kprintln(cstring(msg))
of uint32(CmdType.CMD_ION_FREE):
# Userland is returning a packet
ion_free_raw(uint16(cmd.arg))
of uint32(CmdType.CMD_SYS_EXEC):
kprintln("[Kernel] CMD_SYS_EXEC received!")
let path_ptr = cast[cstring](cmd.arg)
let path_str = $path_ptr
kprint("[Kernel] Summoning: ")
kprintln(cstring(path_str))
subject_loading_path = path_str
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[
0], stack_subject.len)
of uint32(CmdType.CMD_NET_TX):
let args = cast[ptr NetArgs](cmd.arg)
virtio_net_send(cast[ptr UncheckedArray[byte]](args.buf), uint32(args.len))
of uint32(CmdType.CMD_NET_RX):
let args = cast[ptr NetArgs](cmd.arg)
# 1. Poll Hardware (Injects into chan_rx if avail)
virtio_net_poll()
# 2. Check Software Channel
var pkt: IonPacket
if chan_rx.recv(pkt):
# Copy packet to user buffer
let copy_len = if uint64(pkt.len) > args.len: args.len else: uint64(pkt.len)
copyMem(cast[pointer](args.buf), cast[pointer](pkt.data), copy_len)
args.len = copy_len
# Return Slab to Pool
ion_free_raw(pkt.id)
else:
args.len = 0
of uint32(CmdType.CMD_BLK_READ):
let args = cast[ptr BlkArgs](cmd.arg)
virtio_blk_read(args.sector, cast[pointer](args.buf))
of uint32(CmdType.CMD_BLK_WRITE):
let args = cast[ptr BlkArgs](cmd.arg)
virtio_blk_write(args.sector, cast[pointer](args.buf))
of uint32(CmdType.CMD_FS_WRITE):
let args = cast[ptr FileArgs](cmd.arg)
sfs_write_file(cast[cstring](args.name), cast[cstring](args.data), int(args.len))
sfs_sync_vfs()
of uint32(CmdType.CMD_FS_READ):
let args = cast[ptr FileArgs](cmd.arg)
let bytes_read = sfs_read_file(cast[cstring](args.name), cast[pointer](
args.data), int(args.len))
args.len = uint64(bytes_read)
of uint32(CmdType.CMD_FS_MOUNT):
sfs_mount()
sfs_sync_vfs()
else:
discard
# 2. Yield to let Subject run
fiber_yield()
# =========================================================
# Kernel Infrastructure Entry
# =========================================================
# =========================================================
# Kernel Infrastructure Entry
# = =========================================================
# HAL/NPL Entry points
proc rumpk_halt() {.importc, cdecl, noreturn.}
# Hardware Ingress (Zig -> Nim)
proc ion_get_virt(id: uint16): pointer {.importc, cdecl.}
proc ion_ingress*(id: uint16, len: uint16) {.exportc, cdecl.} =
## Intercept raw hardware packet and push to Sovereign RX Channel
let data = ion_get_virt(id)
var pkt = IonPacket(data: cast[ptr UncheckedArray[byte]](data), len: len, id: id)
chan_rx.send(pkt)
# Panic Handler
proc nimPanic(msg: cstring) {.exportc: "panic", cdecl, noreturn.} =
kprintln("\n[PANIC] ")
kprintln(msg)
rumpk_halt()
# Include Watchdog Logic
include watchdog
# =========================================================
# kmain: The Orchestrator
# =========================================================
# =========================================================
# System Call Interface (L1 Dispatcher)
# =========================================================
# Phase 29: Worker Fiber Management
# Generic worker trampoline (no closures needed)
proc worker_trampoline() {.cdecl.} =
let user_fn = cast[proc(arg: uint64) {.cdecl.}](current_fiber.user_entry)
if user_fn != nil:
user_fn(current_fiber.user_arg)
# Worker finished - mark as inactive
for i in 0..<MAX_WORKERS:
if worker_pool[i].id == current_fiber.id:
worker_active[i] = false
kprint("[Worker] Fiber ")
kprint_hex(current_fiber.id)
kprintln(" terminated")
break
# Yield forever (dead fiber)
while true:
fiber_yield()
proc k_spawn(entry: pointer, arg: uint64): int32 {.exportc, cdecl.} =
## Create a new worker fiber
## Returns: Fiber ID on success, -1 on failure
# Find free worker slot
var slot = -1
for i in 0..<MAX_WORKERS:
if not worker_active[i]:
slot = i
break
if slot == -1:
kprintln("[Spawn] Worker pool exhausted")
return -1
# Initialize worker fiber
let worker = addr worker_pool[slot]
worker.id = next_worker_id
next_worker_id += 1
worker.promises = PLEDGE_ALL
worker.sleep_until = 0
worker.user_entry = entry
worker.user_arg = arg
init_fiber(worker, worker_trampoline, addr worker_stacks[slot][0], sizeof(
worker_stacks[slot]))
worker_active[slot] = true
kprint("[Spawn] Created worker FID=")
kprint_hex(worker.id)
kprintln("")
return int32(worker.id)
proc k_join(fid: uint64): int32 {.exportc, cdecl.} =
## Wait for worker fiber to complete
## Returns: 0 on success, -1 if FID not found
# Find worker by ID
var found = false
for i in 0..<MAX_WORKERS:
if worker_pool[i].id == fid and worker_active[i]:
found = true
# Busy wait (yield until worker is inactive)
while worker_active[i]:
fiber_yield()
return 0
if not found:
kprintln("[Join] Worker not found")
return -1
return 0
# Phase 28: Pledge Implementation
proc k_pledge(promises: uint64): int32 {.exportc, cdecl.} =
## The Ratchet: Reduce capabilities, never increase.
## Returns 0 on success, -1 on failure.
if current_fiber == nil:
return -1
# Capability Ratchet: Can only remove bits, never add
current_fiber.promises = current_fiber.promises and promises
kprint("[Pledge] Fiber ")
kprint_hex(current_fiber.id)
kprint(" restricted to: ")
kprint_hex(current_fiber.promises)
kprintln("")
return 0
proc k_handle_exception*(scause, sepc, stval: uint) {.exportc, cdecl.} =
kprint("\n[SECURITY] EXCEPTION! scause=")
kprint_hex(uint64(scause))
kprint(" sepc=")
kprint_hex(uint64(sepc))
kprint(" stval=")
kprint_hex(uint64(stval))
kprintln("\n")
if current_fiber != nil:
kprint("[SECURITY] Faulting Fiber: ")
if current_fiber.name != nil: kprint(current_fiber.name)
else: kprint_hex(current_fiber.id)
kprintln("")
# Non-recoverable for now: Stay in loop
while true: discard
proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
case nr:
of 0x200: # OPEN
# Phase 28: Enforce RPATH/WPATH
let flags = int32(a1)
let needs_write = (flags and 0x01) != 0 # O_WRONLY or O_RDWR
if needs_write:
if (current_fiber.promises and PLEDGE_WPATH) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: WPATH required for write")
return cast[uint](-1)
else:
if (current_fiber.promises and PLEDGE_RPATH) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: RPATH required for read")
return cast[uint](-1)
return uint(ion_vfs_open(cast[cstring](a0), flags))
of 0x201: # CLOSE
return uint(ion_vfs_close(int32(a0)))
of 0x202: # LIST
# Phase 28: Enforce RPATH
if (current_fiber.promises and PLEDGE_RPATH) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: RPATH required for list")
return cast[uint](-1)
return uint(ion_vfs_list(cast[pointer](a0), uint64(a1)))
of 0x203: # READ
# Phase 28: Enforce RPATH/STDIO
if a0 == 0:
if (current_fiber.promises and PLEDGE_STDIO) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: STDIO required for read(0)")
return cast[uint](-1)
var pkt: IonPacket
kprintln("[Kernel] sys_read(0)")
if chan_input.recv(pkt):
let n = if uint64(pkt.len) < a2: uint64(pkt.len) else: a2
if n > 0:
copyMem(cast[pointer](a1), cast[pointer](pkt.data), int(n))
ion_free_raw(pkt.id)
return n
else:
# No data from NexShell, yield to let it run
fiber_yield()
return 0
if (current_fiber.promises and PLEDGE_RPATH) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: RPATH required for read")
return cast[uint](-1)
return uint(ion_vfs_read(int32(a0), cast[pointer](a1), uint64(a2)))
of 0x204: # WRITE
# Phase 28: Enforce WPATH/STDIO
if a0 == 1 or a0 == 2:
if (current_fiber.promises and PLEDGE_STDIO) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: STDIO required for write(1/2)")
return cast[uint](-1)
console_write(cast[pointer](a1), csize_t(a2))
return a2
if (current_fiber.promises and PLEDGE_WPATH) == 0:
kprintln("[SECURITY] PLEDGE VIOLATION: WPATH required for write")
return cast[uint](-1)
return uint(ion_vfs_write(int32(a0), cast[pointer](a1), uint64(a2)))
of 0x500: # SPAWN (Phase 29)
return uint(k_spawn(cast[pointer](a0), uint64(a1)))
of 0x501: # JOIN (Phase 29)
return uint(k_join(uint64(a0)))
of 0: # EXIT
fiber_yield()
return 0
else:
kprint("[Kernel] Unknown Syscall: ")
kprint_hex(uint64(nr))
kprintln("")
return 0
proc kmain() {.exportc, cdecl.} =
kprintln("\n\n")
kprintln("╔═══════════════════════════════════════╗")
kprintln("║ NEXUS RUMK v1.1 - SOVEREIGN ║")
kprintln("╚═══════════════════════════════════════╝")
# 1. Hardware & Memory
kprintln("[Kernel] Initializing Memory Substrate...")
ion_pool_init()
# [FIX] Input Channel Init BEFORE Drivers
ion_init_input()
# Phase 31: The Identity Switch (THE CROSSING) - Temporarily disabled
# kprintln("[MM] Building Sv39 Page Tables...")
# mm_init()
# kprintln("[MM] Activating Identity Map...")
# mm_enable_kernel_paging()
# kprintln("[MM] ✓ Virtual Memory Active. Reality is Virtual.")
hal_io_init()
# 1.1 VFS (InitRD)
vfs_init(addr binary_initrd_tar_start, addr binary_initrd_tar_end)
# 1.2 VFS (SFS)
sfs_mount()
sfs_sync_vfs()
# Wire VFS to SysTable (Hypercall Vector)
let sys = cast[ptr SysTable](SYSTABLE_BASE)
sys.fn_vfs_open = ion_vfs_open
sys.fn_vfs_read = ion_vfs_read
sys.fn_vfs_list = ion_vfs_list
sys.fn_vfs_write = wrapper_vfs_write
sys.fn_vfs_close = ion_vfs_close
sys.fn_log = cast[pointer](kwrite)
sys.fn_pledge = k_pledge # Phase 28: Pledge
sys.fn_yield = cast[proc() {.cdecl.}](kernel.fiber_yield)
# 1.5 The Retina (VirtIO-GPU)
proc virtio_gpu_init(base: uint64) {.importc, cdecl.}
proc matrix_init() {.importc, cdecl.}
# On QEMU virt machine, virtio-mmio devices are at 0x10001000-0x10008000
# GPU could be at any slot.
kprintln("[Kernel] Scanning for VirtIO-GPU...")
for i in 1..8:
let base_addr = 0x10000000'u64 + (uint64(i) * 0x1000'u64)
virtio_gpu_init(base_addr)
# Initial Matrix greeting
matrix_init()
# 2. Channel Infrastructure
kprintln("[Kernel] Mapping Sovereign Channels...")
# Initialize Invariant Shield (Masking)
for r in [addr guest_rx_hal, addr guest_tx_hal, addr guest_event_hal]:
r.head = 0
r.tail = 0
r.mask = 255
guest_cmd_hal.head = 0
guest_cmd_hal.tail = 0
guest_cmd_hal.mask = 255
# Input HAL init removed - handled by ion_init_input
chan_rx.ring = addr guest_rx_hal
chan_tx.ring = addr guest_tx_hal
chan_event.ring = addr guest_event_hal
chan_cmd.ring = addr guest_cmd_hal
# chan_input ring set in ion_init_input
let sys_table = cast[ptr SysTable](SYSTABLE_BASE)
sys_table.magic = 0x4E585553
sys_table.s_rx = addr guest_rx_hal
sys_table.s_tx = addr guest_tx_hal
sys_table.s_event = addr guest_event_hal
sys_table.s_cmd = addr guest_cmd_hal
sys_table.s_input = chan_input.ring # From global
# Framebuffer info (Phase 26: Visual Cortex)
sys_table.fb_addr = fb_kern_get_addr()
sys_table.fb_width = 800 # From framebuffer.zig
sys_table.fb_height = 600
sys_table.fb_stride = 800 * 4 # 32bpp BGRA
sys_table.fb_bpp = 32
# 3. The Nerve (Yield Anchor)
proc rumpk_yield_guard() {.importc, cdecl.}
let yield_ptr_loc = cast[ptr pointer](0x83000FF0'u64)
yield_ptr_loc[] = cast[pointer](rumpk_yield_guard)
# 4. Deployment
kprintln("[Kernel] Spawning System Fibers...")
kprintln(" → fiber_ion")
fiber_ion.name = "ion"
init_fiber(addr fiber_ion, ion_fiber_entry, addr stack_ion[0], sizeof(stack_ion))
kprintln(" → fiber_nexshell")
fiber_nexshell.name = "nexshell"
init_fiber(addr fiber_nexshell, nexshell_main, addr stack_nexshell[0],
sizeof(stack_nexshell))
# 3. UI FIBER (The Face) - Temporarily disabled to debug boot hang
# fiber_ui.name = "ui"
# init_fiber(addr fiber_ui, ui_fiber_entry, addr stack_ui[0], sizeof(stack_ui))
kprintln(" → fiber_subject")
fiber_subject.name = "subject"
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0],
sizeof(stack_subject))
kprintln(" → fiber_watchdog")
fiber_watchdog.name = "watchdog"
init_fiber(addr fiber_watchdog, watchdog_loop, addr stack_watchdog[0], sizeof(stack_watchdog))
# [FIX] GLOBAL INTERRUPT ENABLE
# Open the ear before we enter the loop.
kprintln("[Kernel] Enabling Supervisor Interrupts (SIE)...")
asm "csrsi sstatus, 2"
kprintln("[Kernel] All Systems Go. Entering Autonomous Loop.")
# Handover to Scheduler (The Heartbeat)
switch(addr fiber_ion)
{.pop.}