1140 lines
45 KiB
Nim
1140 lines
45 KiB
Nim
# SPDX-License-Identifier: LSL-1.0
|
|
# Copyright (c) 2026 Markus Maiwald
|
|
# Stewardship: Self Sovereign Society Foundation
|
|
#
|
|
# This file is part of the Nexus Sovereign Core.
|
|
# See legal/LICENSE_SOVEREIGN.md for license terms.
|
|
|
|
# Nexus Sovereign Core: Kernel Implementation
|
|
# target Bravo: Complete Build Unification
|
|
|
|
import fiber, ion, sched, pty, cspace, ontology, fastpath, utcp
|
|
import fs/vfs, fs/tar
|
|
import loader/elf
|
|
import ../libs/membrane/term
|
|
import ../libs/membrane/net_glue
|
|
|
|
const
|
|
MAX_WORKERS* = 8
|
|
MAX_FIBER_STACK* = 128 * 1024
|
|
SYSTABLE_BASE* = when defined(arm64): 0x50000000'u64
|
|
else: 0x83000000'u64
|
|
# Cellular Memory Architecture (M3.3)
|
|
CELL0_BASE* = when defined(arm64): 0x48000000'u64
|
|
else: 0x88000000'u64
|
|
CELL1_BASE* = when defined(arm64): 0x4C000000'u64
|
|
else: 0x8C000000'u64
|
|
USER_VA_BASE* = when defined(arm64): 0x48000000'u64
|
|
else: 0x88000000'u64
|
|
USER_SP_FALLBACK* = when defined(arm64): 0x4BFFFFF0'u64
|
|
else: 0x8BFFFFF0'u64
|
|
|
|
# Export Nim Timer Handler for HAL (Zig calls this)
|
|
proc rumpk_timer_handler() {.exportc, cdecl, used.} =
|
|
discard
|
|
|
|
# --- EXTERNAL SYMBOLS ---
|
|
proc ion_get_phys(id: uint16): uint64 {.importc, cdecl.}
|
|
proc rumpk_net_init() {.importc, cdecl.}
|
|
proc virtio_net_poll() {.importc, cdecl.}
|
|
proc virtio_blk_read(sector: uint64, buf: ptr byte) {.importc, cdecl.}
|
|
proc virtio_blk_write(sector: uint64, buf: ptr byte) {.importc, cdecl.}
|
|
proc fb_kern_get_addr(): uint64 {.importc, cdecl.}
|
|
proc hal_io_init() {.importc, cdecl.}
|
|
proc console_write*(p: pointer, len: csize_t) {.importc: "hal_console_write", cdecl.}
|
|
proc nexshell_main() {.importc, cdecl.}
|
|
proc console_poll() {.importc, cdecl.}
|
|
proc ion_get_virt(id: uint16): uint64 {.importc, cdecl.}
|
|
|
|
|
|
# InitRD Symbols
|
|
var initrd_start {.importc: "_initrd_start" .}: byte
|
|
var initrd_end {.importc: "_initrd_end" .}: byte
|
|
|
|
# Globals
|
|
var
|
|
fiber_ion, fiber_subject, fiber_child, fiber_compositor, fiber_nexshell, fiber_netswitch: FiberObject
|
|
stack_ion {.align: 4096.}, stack_subject {.align: 4096.}, stack_child {.align: 4096.}, stack_compositor {.align: 4096.}, stack_nexshell {.align: 4096.}, stack_netswitch {.align: 4096.}: array[MAX_FIBER_STACK, byte]
|
|
subject_loading_path: array[64, char] = [ '/', 's', 'y', 's', 'r', 'o', '/', 'b', 'i', 'n', '/', 'm', 'k', 's', 'h', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0' ]
|
|
matrix_enabled: bool = false
|
|
active_fibers_arr: array[16, ptr FiberObject]
|
|
|
|
# Trace logic
|
|
proc kprint*(s: cstring) {.exportc, cdecl.} =
|
|
if s != nil:
|
|
var i = 0
|
|
let p = cast[ptr UncheckedArray[char]](s)
|
|
while p[i] != '\0': i += 1
|
|
console_write(cast[pointer](s), csize_t(i))
|
|
|
|
proc kprintln*(s: cstring) {.exportc, cdecl.} =
|
|
kprint(s); kprint("\n")
|
|
|
|
proc kprint_hex*(val: uint64) {.exportc, cdecl.} =
|
|
proc uart_print_hex(val: uint64) {.importc, cdecl.}
|
|
uart_print_hex(val)
|
|
|
|
proc kprint_hex8*(val: uint8) {.exportc, cdecl.} =
|
|
proc uart_print_hex8(val: uint8) {.importc, cdecl.}
|
|
uart_print_hex8(val)
|
|
|
|
# ION Unified Memory Manager shim
|
|
proc ion_alloc*(): IonPacket =
|
|
var id: uint16
|
|
let phys = ion_alloc_raw(addr id)
|
|
if phys == 0: return IonPacket()
|
|
let virt = ion_get_virt(id)
|
|
return IonPacket(data: cast[ptr UncheckedArray[byte]](virt), phys: phys, len: 0, id: id)
|
|
|
|
# Helper: Fiber Sleep
|
|
proc fiber_sleep*(ms: uint64) {.exportc, cdecl.} =
|
|
let now = sched_get_now_ns()
|
|
current_fiber.sleep_until = now + (ms * 1_000_000)
|
|
fiber_yield()
|
|
|
|
proc k_starts_with(s, prefix: cstring): bool =
|
|
let ps = cast[ptr UncheckedArray[char]](s)
|
|
let pp = cast[ptr UncheckedArray[char]](prefix)
|
|
var i = 0
|
|
while pp[i] != '\0':
|
|
if ps[i] == '\0' or ps[i] != pp[i]: return false
|
|
i += 1
|
|
return true
|
|
|
|
proc k_zero_mem(p: pointer, size: uint64) =
|
|
var addr_val = cast[uint64](p)
|
|
var remaining = size
|
|
|
|
# 1. Handle unaligned leading bytes
|
|
while (addr_val mod 8 != 0) and (remaining > 0):
|
|
cast[ptr byte](addr_val)[] = 0
|
|
addr_val += 1
|
|
remaining -= 1
|
|
|
|
# 2. Optimized 64-bit stores for the bulk
|
|
let count = remaining div 8
|
|
if count > 0:
|
|
let p64 = cast[ptr UncheckedArray[uint64]](addr_val)
|
|
for i in 0 ..< int(count):
|
|
p64[i] = 0
|
|
|
|
addr_val += uint64(count * 8)
|
|
remaining -= uint64(count * 8)
|
|
|
|
# 3. Handle trailing bytes
|
|
while remaining > 0:
|
|
cast[ptr byte](addr_val)[] = 0
|
|
addr_val += 1
|
|
remaining -= 1
|
|
|
|
proc kload_phys(path: cstring, phys_offset: uint64): uint64 =
|
|
# The Summoner: Load ELF from VFS into isolated physical memory
|
|
let fd = ion_vfs_open(path, 0)
|
|
if fd < 0:
|
|
kprint("[Loader] Error: Could not open '"); kprint(path); kprintln("'")
|
|
return 0
|
|
|
|
var ehdr: Elf64_Ehdr
|
|
if ion_vfs_read(fd, addr ehdr, uint64(sizeof(ehdr))) != int64(sizeof(ehdr)):
|
|
kprintln("[Loader] Error: ELF header read failed")
|
|
discard ion_vfs_close(fd)
|
|
return 0
|
|
|
|
if ehdr.e_ident[0] != 0x7F or ehdr.e_ident[1] != 'E'.uint8:
|
|
kprintln("[Loader] Error: Invalid ELF magic")
|
|
discard ion_vfs_close(fd)
|
|
return 0
|
|
|
|
# Programs are at /sysro in the TAR
|
|
# We need to skip the /sysro prefix for tar.vfs_read_at
|
|
# or better, just use the path as provided but tar.nim expects no leading /
|
|
var tar_path = path
|
|
if path[0] == '/':
|
|
tar_path = cast[cstring](cast[uint64](path) + 1)
|
|
if k_starts_with(path, "/sysro"):
|
|
tar_path = cast[cstring](cast[uint64](path) + 6)
|
|
if tar_path[0] == '/': tar_path = cast[cstring](cast[uint64](tar_path) + 1)
|
|
|
|
for i in 0 ..< int(ehdr.e_phnum):
|
|
var phdr: Elf64_Phdr
|
|
let ph_offset = ehdr.e_phoff + uint64(i * int(ehdr.e_phentsize))
|
|
if tar.vfs_read_at(tar_path, addr phdr, uint64(sizeof(phdr)), ph_offset) != int64(sizeof(phdr)):
|
|
continue
|
|
|
|
if phdr.p_type == PT_LOAD:
|
|
# Enable S-mode access to U-mode pages (SUM=1)
|
|
when defined(riscv64):
|
|
{.emit: """asm volatile ("li t1, 0x40000; csrs sstatus, t1" : : : "t1");""" .}
|
|
|
|
let dest = cast[ptr UncheckedArray[byte]](phdr.p_vaddr)
|
|
|
|
if phdr.p_filesz > 0:
|
|
if tar.vfs_read_at(tar_path, dest, phdr.p_filesz, phdr.p_offset) != int64(phdr.p_filesz):
|
|
kprintln("[Loader] Error: Segment load failed")
|
|
|
|
if phdr.p_memsz > phdr.p_filesz:
|
|
let bss_start = phdr.p_vaddr + phdr.p_filesz
|
|
let bss_len = phdr.p_memsz - phdr.p_filesz
|
|
kprint(" - Zeroing BSS: VA="); kprint_hex(bss_start); kprint(" Len="); kprint_hex(bss_len); kprintln("")
|
|
k_zero_mem(cast[pointer](bss_start), bss_len)
|
|
|
|
# {.emit: """asm volatile ("li t1, 0x40000; csrc sstatus, t1" : : : "t1");""" .}
|
|
|
|
# ⚡ ARCH-SYNC: Flush I-Cache after loading new code
|
|
when defined(riscv64):
|
|
{.emit: """asm volatile ("fence.i" : : : "memory");""" .}
|
|
elif defined(arm64):
|
|
{.emit: """asm volatile ("ic iallu; dsb ish; isb" : : : "memory");""" .}
|
|
|
|
discard ion_vfs_close(fd)
|
|
return ehdr.e_entry
|
|
|
|
# --- M4.4: MANIFEST-DRIVEN CAPABILITY LOADING ---
|
|
|
|
proc set_pledge*(f: var FiberObject, pledge: uint64) =
|
|
## Set fiber pledge mask, preserving Spectrum bits [63:62]
|
|
f.promises = (f.promises and 0xC000000000000000'u64) or (pledge and 0x3FFFFFFFFFFFFFFF'u64)
|
|
|
|
proc kload_manifest_tar(path: cstring): ManifestResult =
|
|
## Scan ELF section headers via TAR for .nexus.manifest containing BKDL data.
|
|
## Uses tar.vfs_read_at() for selective reads (same approach as kload_phys).
|
|
result.header = nil
|
|
result.caps = nil
|
|
result.count = 0
|
|
|
|
# Strip /sysro prefix for TAR paths (same logic as kload_phys)
|
|
var tar_path = path
|
|
if path[0] == '/':
|
|
tar_path = cast[cstring](cast[uint64](path) + 1)
|
|
if k_starts_with(path, "/sysro"):
|
|
tar_path = cast[cstring](cast[uint64](path) + 6)
|
|
if tar_path[0] == '/': tar_path = cast[cstring](cast[uint64](tar_path) + 1)
|
|
|
|
# 1. Read ELF header
|
|
var ehdr: Elf64_Ehdr
|
|
if tar.vfs_read_at(tar_path, addr ehdr, uint64(sizeof(ehdr)), 0) != int64(sizeof(ehdr)):
|
|
return
|
|
if ehdr.e_ident[0] != 0x7F or ehdr.e_ident[1] != 'E'.uint8:
|
|
return
|
|
if ehdr.e_shoff == 0 or ehdr.e_shnum == 0 or ehdr.e_shstrndx >= ehdr.e_shnum:
|
|
return
|
|
|
|
# 2. Read shstrtab section header to get string table location
|
|
let strtab_offset = ehdr.e_shoff + uint64(ehdr.e_shstrndx) * uint64(ehdr.e_shentsize)
|
|
var strtab_shdr: Elf64_Shdr
|
|
if tar.vfs_read_at(tar_path, addr strtab_shdr, uint64(sizeof(Elf64_Shdr)), strtab_offset) != int64(sizeof(Elf64_Shdr)):
|
|
return
|
|
|
|
# 3. Read the string table itself (cap at 512 bytes — section names are short)
|
|
var strtab_buf: array[512, byte]
|
|
let strtab_read_size = min(strtab_shdr.sh_size, 512'u64)
|
|
if tar.vfs_read_at(tar_path, addr strtab_buf[0], strtab_read_size, strtab_shdr.sh_offset) != int64(strtab_read_size):
|
|
return
|
|
|
|
# 4. Scan section headers for .nexus.manifest
|
|
let target = cstring(".nexus.manifest")
|
|
for i in 0 ..< int(ehdr.e_shnum):
|
|
var shdr: Elf64_Shdr
|
|
let sh_offset = ehdr.e_shoff + uint64(i) * uint64(ehdr.e_shentsize)
|
|
if tar.vfs_read_at(tar_path, addr shdr, uint64(sizeof(Elf64_Shdr)), sh_offset) != int64(sizeof(Elf64_Shdr)):
|
|
continue
|
|
|
|
if shdr.sh_name < uint32(strtab_read_size):
|
|
|
|
# Compare section name against ".nexus.manifest"
|
|
var match = true
|
|
var j = 0
|
|
while j < 16: # len(".nexus.manifest") + null = 16
|
|
let ch = target[j]
|
|
let idx = int(shdr.sh_name) + j
|
|
if idx >= int(strtab_read_size):
|
|
match = false
|
|
break
|
|
if ch == '\0':
|
|
break # End of target string — all matched
|
|
if strtab_buf[idx] != byte(ch):
|
|
match = false
|
|
break
|
|
j += 1
|
|
|
|
if match and shdr.sh_size >= uint64(sizeof(BkdlHeader)):
|
|
# 5. Read the manifest section data into a static buffer
|
|
# Max manifest size: BkdlHeader (118) + 16 caps * CapDescriptor (12) = 310 bytes
|
|
var manifest_buf {.global.}: array[512, byte]
|
|
let read_size = min(shdr.sh_size, 512'u64)
|
|
if tar.vfs_read_at(tar_path, addr manifest_buf[0], read_size, shdr.sh_offset) != int64(read_size):
|
|
return
|
|
|
|
let hdr = cast[ptr BkdlHeader](addr manifest_buf[0])
|
|
if hdr.magic != BKDL_MAGIC or hdr.version != BKDL_VERSION:
|
|
kprintln("[Manifest] Invalid BKDL magic/version")
|
|
return
|
|
|
|
let expected = uint64(sizeof(BkdlHeader)) + uint64(hdr.cap_count) * uint64(sizeof(CapDescriptor))
|
|
if expected > read_size:
|
|
kprintln("[Manifest] BKDL cap_count exceeds section size")
|
|
return
|
|
|
|
kprint("[Manifest] WARNING: Signature unchecked (dev mode)")
|
|
kprintln("")
|
|
discard emit_access_denied(0, 0xB0D1, 0, 0) # STL: signature skip event
|
|
|
|
result.header = hdr
|
|
result.caps = cast[ptr UncheckedArray[CapDescriptor]](addr manifest_buf[sizeof(BkdlHeader)])
|
|
result.count = int(hdr.cap_count)
|
|
return
|
|
|
|
proc apply_manifest*(fiber_id: uint64, manifest: ManifestResult, pledge_out: var uint64) =
|
|
## Apply BKDL manifest capabilities to fiber's CSpace.
|
|
## Derives pledge mask from requested capability types.
|
|
var derived_pledge: uint64 = PLEDGE_STDIO # Always grant basic I/O
|
|
|
|
for i in 0 ..< manifest.count:
|
|
let cap = manifest.caps[i]
|
|
let slot = fiber_grant_channel(fiber_id, cap.resource_id, cap.perms)
|
|
if slot >= 0:
|
|
discard emit_capability_grant(fiber_id, cap.cap_type, cap.resource_id, uint8(slot), 0)
|
|
kprint("[Manifest] Granted cap "); kprint_hex(cap.resource_id)
|
|
kprint(" perms="); kprint_hex(uint64(cap.perms))
|
|
kprint(" to fiber "); kprint_hex(fiber_id); kprintln("")
|
|
else:
|
|
discard emit_access_denied(fiber_id, cap.resource_id, cap.perms, 0)
|
|
kprint("[Manifest] DENIED cap "); kprint_hex(cap.resource_id)
|
|
kprint(" for fiber "); kprint_hex(fiber_id); kprintln(" (CSpace full)")
|
|
|
|
# Derive pledge bits from capability types
|
|
if cap.resource_id == 0x2000: # VFS
|
|
derived_pledge = derived_pledge or PLEDGE_RPATH
|
|
if (cap.perms and PERM_WRITE) != 0:
|
|
derived_pledge = derived_pledge or PLEDGE_WPATH
|
|
elif cap.resource_id == 0x500 or cap.resource_id == 0x501: # NET_TX / NET_RX
|
|
derived_pledge = derived_pledge or PLEDGE_INET
|
|
elif cap.resource_id == 0x1000 or cap.resource_id == 0x1001: # Console
|
|
discard # PLEDGE_STDIO already set
|
|
|
|
pledge_out = derived_pledge
|
|
|
|
# --- FIBER ENTRIES ---
|
|
|
|
proc subject_fiber_entry() {.cdecl.} =
|
|
let fid = current_fiber.id
|
|
kprint("[Subject:"); kprint_hex(fid); kprint("] Fiber Entry reached. PA_Offset="); kprint_hex(current_fiber.phys_offset); kprintln("")
|
|
|
|
# Use new robust loader
|
|
kprint("[Loader:"); kprint_hex(fid); kprint("] Loading: "); kprintln(cast[cstring](addr subject_loading_path[0]))
|
|
|
|
# Load into Cellular Slot (phys_offset)
|
|
let entry_addr = kload_phys(cast[cstring](addr subject_loading_path[0]), current_fiber.phys_offset)
|
|
|
|
# M4.4: Scan ELF for BKDL manifest and apply capabilities
|
|
let loading_path = cast[cstring](addr subject_loading_path[0])
|
|
let manifest = kload_manifest_tar(loading_path)
|
|
if manifest.header != nil:
|
|
kprint("[Manifest] Found BKDL manifest: "); kprint_hex(uint64(manifest.count)); kprintln(" capabilities")
|
|
var pledge: uint64 = 0
|
|
apply_manifest(current_fiber.id, manifest, pledge)
|
|
set_pledge(current_fiber[], pledge)
|
|
kprint("[Manifest] Pledge mask: "); kprint_hex(pledge); kprintln("")
|
|
else:
|
|
kprintln("[Manifest] No BKDL manifest — default policy (STDIO only)")
|
|
set_pledge(current_fiber[], PLEDGE_STDIO)
|
|
|
|
if entry_addr != 0:
|
|
kprint("[Subject:"); kprint_hex(fid); kprint("] Entering Payload at: "); kprint_hex(entry_addr); kprintln("")
|
|
proc hal_enter_userland(entry, systable, sp: uint64) {.importc, cdecl.}
|
|
var sp = current_fiber.user_sp_init
|
|
if sp == 0:
|
|
# Fallback (Legacy/Init) - Top of the 64MB Sentinel Cell
|
|
sp = USER_SP_FALLBACK
|
|
|
|
kprintln("╔════════════════════════════════════════════════════╗")
|
|
kprintln("║ PRE-FLIGHT: USERLAND TRANSITION ║")
|
|
kprintln("╚════════════════════════════════════════════════════╝")
|
|
kprint(" Entry: "); kprint_hex(entry_addr); kprintln("")
|
|
kprint(" SysTable: "); kprint_hex(SYSTABLE_BASE); kprintln("")
|
|
kprint(" Stack: "); kprint_hex(sp); kprintln("")
|
|
kprint(" SATP: "); kprint_hex(current_fiber.satp_value); kprintln("")
|
|
kprint(" Phys Off: "); kprint_hex(current_fiber.phys_offset); kprintln("")
|
|
kprintln("")
|
|
|
|
# 🔥 CRITICAL: Activate worker page table BEFORE entering userland!
|
|
# Without this, userland executes with kernel identity map → instant page fault
|
|
if current_fiber.satp_value != 0:
|
|
proc mm_activate_satp(satp_val: uint64) {.importc, cdecl.}
|
|
kprint("[Subject:"); kprint_hex(fid); kprint("] Activating worker page table: "); kprint_hex(current_fiber.satp_value); kprintln("")
|
|
mm_activate_satp(current_fiber.satp_value)
|
|
|
|
hal_enter_userland(entry_addr, SYSTABLE_BASE, sp)
|
|
else:
|
|
kprint("[Subject:"); kprint_hex(fid); kprintln("] Loader failed to find/load payload!")
|
|
while true: fiber_sleep(1000)
|
|
|
|
proc nexshell_fiber_entry() {.cdecl.} =
|
|
kprintln("[NexShell] Interactive Fiber Online")
|
|
while true:
|
|
console_poll()
|
|
fiber_sleep(10)
|
|
|
|
proc compositor_fiber_entry() {.cdecl.} =
|
|
kprintln("[Compositor] Fiber Entry reached.")
|
|
while true:
|
|
if matrix_enabled:
|
|
fiber_sleep(100)
|
|
else:
|
|
term.term_render()
|
|
fiber_sleep(33) # 30Hz
|
|
|
|
proc mm_create_worker_map(stack_base: uint64, stack_size: uint64, packet_addr: uint64, phys_base: uint64, region_size: uint64): uint64 {.importc, cdecl.}
|
|
|
|
proc setup_cellular_stack(phys_base: uint64, slot_size: uint64, user_base: uint64): uint64 =
|
|
# Stack grows down from the top of the cell
|
|
var phys_top = phys_base + slot_size
|
|
var user_sp = user_base + slot_size
|
|
|
|
# Align 16
|
|
phys_top = phys_top and not 15'u64
|
|
user_sp = user_sp and not 15'u64
|
|
|
|
# Helper to push data
|
|
template push_str(s: string): uint64 =
|
|
let s_val = s
|
|
let l = uint64(s_val.len) + 1 # + null terminator
|
|
phys_top -= l
|
|
user_sp -= l
|
|
# Zero the memory first (for null safety)
|
|
k_zero_mem(cast[pointer](phys_top), l)
|
|
copyMem(cast[pointer](phys_top), unsafeAddr s_val[0], s_val.len)
|
|
user_sp # Return USER address
|
|
|
|
# Environment strings
|
|
let home_addr = push_str("HOME=/")
|
|
let term_addr = push_str("TERM=vt100")
|
|
let path_addr = push_str("/bin/mksh")
|
|
|
|
kprint("[Stack] HOME env at: "); kprint_hex(home_addr); kprint("\n")
|
|
kprint("[Stack] TERM env at: "); kprint_hex(term_addr); kprint("\n")
|
|
kprint("[Stack] argv[0] at: "); kprint_hex(path_addr); kprint("\n")
|
|
|
|
# Align 16 before pointer arrays
|
|
phys_top = phys_top and not 15'u64
|
|
user_sp = user_sp and not 15'u64
|
|
|
|
# Helper to push uint64
|
|
template push_u64(val: uint64) =
|
|
phys_top -= 8
|
|
user_sp -= 8
|
|
cast[ptr uint64](phys_top)[] = val
|
|
|
|
# Auxv (0, 0)
|
|
push_u64(0)
|
|
push_u64(0)
|
|
|
|
# Envp (NULL, TERM, HOME) - Reverse order of push
|
|
push_u64(0)
|
|
push_u64(term_addr)
|
|
push_u64(home_addr)
|
|
|
|
# Argv (NULL, path)
|
|
push_u64(0)
|
|
push_u64(path_addr)
|
|
|
|
# Argc (1)
|
|
push_u64(1)
|
|
|
|
kprint("[Stack] Final SP: "); kprint_hex(user_sp); kprint("\n")
|
|
|
|
return user_sp
|
|
|
|
proc ion_fiber_entry() {.cdecl.} =
|
|
kprintln("[ION] Fiber Entry reached.")
|
|
while true:
|
|
var pkt: CmdPacket
|
|
if chan_cmd.recv(pkt):
|
|
kprint("[ION] Received Packet Kind: "); kprint_hex(uint64(pkt.kind)); kprintln("")
|
|
case CmdType(pkt.kind):
|
|
of CMD_SYS_EXIT:
|
|
kprintln("[ION] Restarting Subject...")
|
|
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], sizeof(stack_subject))
|
|
of CMD_ION_FREE:
|
|
ion_free_raw(uint16(pkt.arg))
|
|
of CMD_GPU_MATRIX:
|
|
matrix_enabled = (pkt.arg != 0)
|
|
of CMD_SPAWN_FIBER:
|
|
# Fiber spawn requested
|
|
# Hardcoded for verification to confirm isolation
|
|
let target = "/sysro/bin/mksh"
|
|
kprint("[ION] Spawning child fiber for: "); kprintln(target)
|
|
|
|
# Copy into loading path
|
|
copyMem(addr subject_loading_path[0], unsafeAddr target[0], target.len + 1)
|
|
|
|
# Allocate PTY
|
|
let pid = pty_alloc()
|
|
if pid < 0:
|
|
kprintln("[ION] Failed to allocate PTY for child!")
|
|
|
|
# Re-initialize fiber_child with the requested binary
|
|
# Note: stack_child is used for KERNEL context switching, not user stack.
|
|
init_fiber(addr fiber_child, subject_fiber_entry, addr stack_child[0], sizeof(stack_child))
|
|
|
|
# 🏛️ CELLULAR ALLOCATION (SPEC-202 Rev 2)
|
|
# Sentinel (Init) takes Cell 0, Mksh (First Child) takes Cell 1
|
|
let cell_base = CELL1_BASE
|
|
let user_base = USER_VA_BASE
|
|
let cell_size = 64 * 1024 * 1024'u64
|
|
|
|
# Phase 40: Set PTY & User Stack
|
|
fiber_child.pty_id = pid
|
|
fiber_child.phys_offset = cell_base
|
|
|
|
# Setup User Stack in CELLULAR Memory (User Top)
|
|
# We write to Physical Address (cell_base + size), but Mksh sees (user_base + size)
|
|
fiber_child.user_sp_init = setup_cellular_stack(cell_base, cell_size, user_base)
|
|
|
|
# Create Map avoiding Kernel Stack exposure
|
|
# We pass 0 as stack_base to skip mapping stack_child into user space.
|
|
fiber_child.satp_value = mm_create_worker_map(0, 0, SYSTABLE_BASE, cell_base, cell_size)
|
|
|
|
# M4.4: Child capabilities are applied in subject_fiber_entry via BKDL manifest.
|
|
# No hardcoded grants needed here — manifest drives CSpace + pledge.
|
|
# M4.5: Set budget based on child's Spectrum tier
|
|
fiber_child.budget_ns = default_budget_for_spectrum((addr fiber_child).getSpectrum())
|
|
kprintln("[ION] Child fiber spawned successfully")
|
|
else: discard
|
|
else:
|
|
# No pending commands - yield to scheduler (short sleep to avoid busy spin)
|
|
fiber_sleep(1) # 1ms
|
|
|
|
proc rumpk_yield_internal*() {.exportc, cdecl.} =
|
|
# Switch back to the main dispatcher loop
|
|
switch(active_fibers_arr[6])
|
|
|
|
proc fiber_yield*() {.exportc, cdecl.} =
|
|
# Return to the dispatcher context (main_fiber)
|
|
# kprint("[Y"); kprint_hex(current_fiber.id); kprint("]")
|
|
switch(addr main_fiber)
|
|
# The `ld_internal()` part from the instruction was syntactically incorrect
|
|
# and likely a typo or incomplete instruction.
|
|
# Assuming the intent was to replace the previous yield mechanism with a direct switch.
|
|
|
|
proc fiber_netswitch_entry() {.cdecl.} =
|
|
kprintln("[NetSwitch] Traffic Engine Online")
|
|
|
|
# Iron Firewall: Verify channel sovereignty before operation
|
|
if chan_netswitch_rx.ring == nil:
|
|
kprintln("[CRITICAL] NetSwitch RX channel uninitialized - HALTING")
|
|
while true: fiber_yield()
|
|
|
|
if chan_net_rx.ring == nil or chan_net_tx.ring == nil:
|
|
kprintln("[CRITICAL] Global net rings uninitialized - HALTING")
|
|
while true: fiber_yield()
|
|
|
|
kprintln("[NetSwitch] Channels verified. Sovereignty confirmed.")
|
|
|
|
# Initialize LwIP Membrane (DHCP, Netif, DNS)
|
|
membrane_init()
|
|
kprintln("[NetSwitch] Membrane initialized — DHCP running")
|
|
|
|
while true:
|
|
var pkt: IonPacket
|
|
|
|
# INGRESS: Driver -> NetSwitch -> Fast Path Filter
|
|
if chan_netswitch_rx.recv(pkt):
|
|
# SPEC-700: Fast Path Bypass for UTCP Tunnel (UDP/9999)
|
|
if is_utcp_tunnel(pkt.data, pkt.len):
|
|
# FAST PATH: Bypass LwIP entirely
|
|
var utcp_len = pkt.len
|
|
let utcp_data = strip_tunnel_headers(pkt.data, utcp_len)
|
|
if utcp_data != nil:
|
|
utcp_handle_packet(utcp_data, utcp_len)
|
|
ion_free_raw(pkt.id)
|
|
else:
|
|
kprintln("[FastPath] Strip failed - dropping")
|
|
ion_free_raw(pkt.id)
|
|
else:
|
|
# SLOW PATH: Route to LwIP via chan_net_rx
|
|
if not chan_net_rx.send(pkt):
|
|
ion_free_raw(pkt.id)
|
|
|
|
# EGRESS: Subject (chan_net_tx) -> NetSwitch -> Driver (ion_tx_push)
|
|
if chan_net_tx.recv(pkt):
|
|
kprintln("[NetSwitch] Forwarding Egress")
|
|
var res = ion_tx_push(pkt)
|
|
if not res: kprintln("[NetSwitch] Drop (TX Full)")
|
|
|
|
# Drive LwIP timers + RX ingestion (DHCP, ARP, TCP, ICMP)
|
|
pump_membrane_stack()
|
|
|
|
# Poll Network
|
|
virtio_net_poll()
|
|
|
|
# Poll UART (Backup/Primary Polling Mode)
|
|
{.emit: "extern void uart_poll_input(void); uart_poll_input();".}
|
|
|
|
# Prevent Starvation
|
|
fiber_sleep(10) # 10ms - allow DHCP state machine to execute
|
|
|
|
proc ion_ingress*(id: uint16, len: uint16, offset: uint16) {.exportc, cdecl.} =
|
|
## Handle packet from Network Driver
|
|
# Get actual physical address and apply driver offset
|
|
let base_phys = ion_get_phys(id)
|
|
let base_virt = ion_get_virt(id)
|
|
|
|
# Create packet with pointers pointing DIRECTLY to the Ethernet frame
|
|
let pkt = IonPacket(
|
|
id: id,
|
|
len: len,
|
|
phys: base_phys + uint64(offset),
|
|
data: cast[ptr UncheckedArray[byte]](cast[uint64](base_virt) + uint64(offset))
|
|
)
|
|
|
|
if not chan_netswitch_rx.send(pkt):
|
|
ion_free_raw(id)
|
|
|
|
|
|
# --- SCHEDULER STATE ---
|
|
# --- SCHEDULER STATE ---
|
|
|
|
proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} =
|
|
if chan_input.ring == nil: return
|
|
|
|
var pkt = ion_alloc()
|
|
if pkt.data == nil:
|
|
# kprintln("[ION Push] CRITICAL: Slab allocation failed!")
|
|
return
|
|
|
|
pkt.data[0] = cast[ptr byte](p)[]
|
|
pkt.len = 1
|
|
|
|
var wake_count = 0
|
|
if chan_input.send(pkt):
|
|
# Wake up any fibers waiting for terminal input
|
|
for i in 0..<16:
|
|
let f = active_fibers_arr[i]
|
|
if f != nil and f.is_blocked and (f.blocked_on_mask and 0x1000) != 0:
|
|
f.is_blocked = false
|
|
f.blocked_on_mask = 0
|
|
f.sleep_until = 0 # Wake immediately
|
|
wake_count += 1
|
|
|
|
if wake_count > 0:
|
|
# kprint("[ION] Woke "); kprint_hex(uint64(wake_count)); kprintln(" fibers")
|
|
discard
|
|
|
|
proc k_check_deferred_yield*() {.exportc, cdecl.} =
|
|
if current_fiber != nil and current_fiber.wants_yield:
|
|
current_fiber.wants_yield = false
|
|
fiber_yield()
|
|
|
|
proc k_handle_exception*(scause, sepc, stval: uint) {.exportc, cdecl.} =
|
|
kprintln("")
|
|
kprintln("╔════════════════════════════════════════════════════╗")
|
|
kprintln("║ KERNEL IMMUNE SYSTEM: EXCEPTION DETECTED ║")
|
|
kprintln("╚════════════════════════════════════════════════════╝")
|
|
|
|
# Decode scause
|
|
let cause_code = scause and 0x7FFFFFFFFFFFFFFF'u64
|
|
kprint(" SCAUSE: "); kprint_hex(scause); kprint(" (")
|
|
case cause_code:
|
|
of 0: kprint("Instruction address misaligned")
|
|
of 1: kprint("Instruction access fault")
|
|
of 2: kprint("Illegal instruction")
|
|
of 3: kprint("Breakpoint")
|
|
of 4: kprint("Load address misaligned")
|
|
of 5: kprint("Load access fault")
|
|
of 6: kprint("Store/AMO address misaligned")
|
|
of 7: kprint("Store/AMO access fault")
|
|
of 8: kprint("Environment call from U-mode")
|
|
of 9: kprint("Environment call from S-mode")
|
|
of 12: kprint("Instruction page fault")
|
|
of 13: kprint("Load page fault")
|
|
of 15: kprint("Store/AMO page fault")
|
|
else: kprint("Unknown exception")
|
|
kprintln(")")
|
|
|
|
kprint(" SEPC: "); kprint_hex(sepc); kprintln(" (Faulting PC)")
|
|
kprint(" STVAL: "); kprint_hex(stval); kprintln(" (Fault address/info)")
|
|
|
|
# Dump current fiber context
|
|
if current_fiber != nil:
|
|
kprint(" Fiber: "); kprint_hex(current_fiber.id)
|
|
kprint(" SATP: "); kprint_hex(current_fiber.satp_value)
|
|
kprintln("")
|
|
|
|
kprintln("")
|
|
kprintln("[IMMUNE] System HALTING (Trap Loop Prevention).")
|
|
when defined(riscv64):
|
|
while true:
|
|
{.emit: "asm volatile(\"wfi\");".}
|
|
elif defined(arm64):
|
|
while true:
|
|
{.emit: "asm volatile(\"wfe\");".}
|
|
else:
|
|
while true: discard
|
|
|
|
proc k_get_current_satp*(): uint64 {.exportc, cdecl.} =
|
|
if current_fiber != nil:
|
|
return current_fiber.satp_value
|
|
return 0
|
|
|
|
proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} =
|
|
return ion_vfs_write(fd, buf, count)
|
|
|
|
# --- M4: PLEDGE ENFORCEMENT ---
|
|
|
|
proc check_pledge(nr: uint, f: Fiber): bool =
|
|
## Returns true if syscall is allowed by fiber's pledge mask
|
|
let pledges = f.promises and 0x3FFFFFFFFFFFFFFF'u64
|
|
if pledges == PLEDGE_ALL: return true # Unrestricted
|
|
|
|
case nr:
|
|
of 0x01, 0x65, 0x66, 0x100, 0x101, 0x102:
|
|
# exit, nanosleep, get_time, yield, pledge, wait_multi — always allowed
|
|
return true
|
|
of 0x203, 0x204: # READ, WRITE
|
|
return (pledges and PLEDGE_STDIO) != 0
|
|
of 0x200, 0x202: # OPEN, LIST
|
|
return (pledges and PLEDGE_RPATH) != 0
|
|
of 0x201, 0x205, 0x206, 0x207: # CLOSE, IOCTL, FCNTL, DUP2
|
|
return (pledges and PLEDGE_STDIO) != 0
|
|
of 0x600, 0x300: # EXECV, SPAWN_FIBER
|
|
return (pledges and PLEDGE_EXEC) != 0
|
|
of 0x905: # SYS_SOCK_RESOLVE
|
|
return (pledges and PLEDGE_INET) != 0
|
|
else:
|
|
return true # Unknown syscalls pass through
|
|
|
|
# --- SYSCALL HANDLER ---
|
|
|
|
proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
|
|
# M4: Pledge enforcement gate
|
|
if current_fiber != nil and not check_pledge(nr, current_fiber):
|
|
kprint("[DENIED] Fiber "); kprint_hex(current_fiber.id)
|
|
kprint(" pledge violation: syscall "); kprint_hex(uint64(nr)); kprintln("")
|
|
discard emit_access_denied(current_fiber.id, uint64(nr), 0, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u # -1 EPERM
|
|
|
|
if nr != 0x100 and nr != 0x205 and nr != 0x204 and nr != 0x203:
|
|
kprint("[Syscall] NR: "); kprint_hex(uint64(nr)); kprintln("")
|
|
|
|
case nr:
|
|
of 0x01: # EXIT
|
|
var pkt = CmdPacket(kind: uint32(CmdType.CMD_SYS_EXIT), arg: a0)
|
|
discard chan_cmd.send(pkt)
|
|
current_fiber.wants_yield = true
|
|
return 0
|
|
of 0x65: # NANOSLEEP
|
|
let now = sched_get_now_ns()
|
|
kprint("Slp: "); kprint_hex(now); kprint(" "); kprint_hex(a0); kprint("\n")
|
|
current_fiber.sleep_until = now + a0
|
|
fiber_yield()
|
|
kprint("Woke\n")
|
|
return 0
|
|
of 0x66: # SYS_GET_TIME
|
|
return uint(sched_get_now_ns())
|
|
of 0x100: # YIELD
|
|
fiber_yield()
|
|
return 0
|
|
of 0x101: # SYS_PLEDGE (OpenBSD semantics: can only narrow, never widen)
|
|
let current = current_fiber.promises and 0x3FFFFFFFFFFFFFFF'u64
|
|
let requested = a0 and 0x3FFFFFFFFFFFFFFF'u64
|
|
if (requested and (not current)) != 0:
|
|
kprint("[DENIED] Fiber "); kprint_hex(current_fiber.id); kprintln(" pledge widen attempt")
|
|
discard emit_access_denied(current_fiber.id, 0x101, 0, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u # -1 EPERM
|
|
current_fiber.promises = (current_fiber.promises and 0xC000000000000000'u64) or requested
|
|
return 0
|
|
of 0x102: # SYS_WAIT_MULTI (Silence Doctrine)
|
|
current_fiber.blocked_on_mask = a0
|
|
current_fiber.is_blocked = true
|
|
fiber_yield()
|
|
return 0
|
|
of 0x200: # OPEN
|
|
# M4: Check VFS capability (channel 0x2000)
|
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
|
let write_mode = (a1 and 1) != 0 # O_WRONLY or O_RDWR
|
|
let needed_perm = if write_mode: PERM_WRITE else: PERM_READ
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, needed_perm):
|
|
discard emit_access_denied(current_fiber.id, 0x2000, needed_perm, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
let path = cast[cstring](a0)
|
|
let result = ion_vfs_open(path, int32(a1))
|
|
kprint("[OPEN] path="); kprint(path); kprint(" result="); kprint_hex(uint64(result)); kprint(" returning...\n")
|
|
let ret_val = uint(result)
|
|
kprint("[OPEN] About to return value: "); kprint_hex(ret_val); kprint("\n")
|
|
return ret_val
|
|
of 0x201: # CLOSE
|
|
kprint("[CLOSE] fd="); kprint_hex(a0); kprint("\n")
|
|
return uint(ion_vfs_close(int32(a0)))
|
|
of 0x202: # LIST
|
|
# M4: Check VFS read capability (channel 0x2000)
|
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_READ):
|
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_READ, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
return uint(ion_vfs_list(cast[pointer](a0), uint64(a1)))
|
|
of 0x205: # IOCTL
|
|
kprint("[IOCTL] fd="); kprint_hex(a0); kprint(" request="); kprint_hex(a1); kprint("\n")
|
|
return 0 # stub
|
|
of 0x206: # FCNTL
|
|
kprint("[FCNTL] fd="); kprint_hex(a0); kprint(" cmd="); kprint_hex(a1); kprint("\n")
|
|
if a1 == 0: # F_DUPFD
|
|
return uint(ion_vfs_dup(int32(a0), int32(a2)))
|
|
return 0
|
|
of 0x207: # DUP2
|
|
return uint(ion_vfs_dup2(int32(a0), int32(a1)))
|
|
of 0x905: # SYS_SOCK_RESOLVE
|
|
# TODO: Implement getaddrinfo kernel integration
|
|
return 0 # Not implemented yet
|
|
of 0x203: # READ
|
|
# M4: Check console.input capability for stdin (fd 0)
|
|
if a0 == 0 and current_fiber != nil and current_fiber.cspace_id < 16:
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x1000, PERM_READ):
|
|
discard emit_access_denied(current_fiber.id, 0x1000, PERM_READ, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
# M4: Check VFS capability for file reads (fd >= 3)
|
|
if a0 >= 3 and current_fiber != nil and current_fiber.cspace_id < 16:
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_READ):
|
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_READ, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
var vres: int64 = -2
|
|
if a0 >= 3:
|
|
vres = ion_vfs_read(int32(a0), cast[pointer](a1), uint64(a2))
|
|
|
|
# Fallback to PTY if FD=0 or VFS returned TTY mode (-2)
|
|
if a0 == 0 or vres == -2:
|
|
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
|
while true:
|
|
if pty_has_data_for_slave(pid):
|
|
var buf: array[1, byte]
|
|
let n = pty_read_slave(int(PTY_SLAVE_BASE + pid), addr buf[0], 1)
|
|
if n > 0:
|
|
cast[ptr UncheckedArray[byte]](a1)[0] = buf[0]
|
|
return 1
|
|
|
|
var pkt: IonPacket
|
|
if chan_input.recv(pkt):
|
|
for i in 0..<int(pkt.len):
|
|
pty_push_input(pid, char(pkt.data[i]))
|
|
ion_free(pkt)
|
|
else:
|
|
current_fiber.is_blocked = true
|
|
current_fiber.blocked_on_mask = 0x1000 # Terminal Input
|
|
current_fiber.sleep_until = 0xFFFFFFFFFFFFFFFF'u64 # Infinite
|
|
fiber_yield()
|
|
return uint(vres)
|
|
of 0x204: # WRITE
|
|
if a0 == 1 or a0 == 2:
|
|
# M4: Check console.output capability (channel 0x1001)
|
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x1001, PERM_WRITE):
|
|
discard emit_access_denied(current_fiber.id, 0x1001, PERM_WRITE, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
console_write(cast[pointer](a1), csize_t(a2))
|
|
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
|
discard pty_write_slave(PTY_SLAVE_BASE + pid, cast[ptr byte](a1), int(a2))
|
|
return a2
|
|
elif a0 >= 3:
|
|
# M4: Check VFS write capability (channel 0x2000)
|
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_WRITE):
|
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_WRITE, 0)
|
|
return 0xFFFFFFFFFFFFFFFF'u
|
|
return uint(ion_vfs_write(int32(a0), cast[pointer](a1), uint64(a2)))
|
|
return 0xFFFFFFFFFFFFFFFF'u # -1
|
|
of 0x600: # EXECV (Legacy - use SYS_SPAWN_FIBER instead)
|
|
# Manual copy path to subject_loading_path
|
|
let p = cast[ptr UncheckedArray[char]](a0)
|
|
var i = 0
|
|
while p[i] != '\0' and i < 63:
|
|
subject_loading_path[i] = p[i]
|
|
i += 1
|
|
subject_loading_path[i] = '\0'
|
|
var pkt = CmdPacket(kind: uint32(CmdType.CMD_SYS_EXIT), arg: 0)
|
|
discard chan_cmd.send(pkt)
|
|
current_fiber.wants_yield = true
|
|
return 0
|
|
of 0x300: # SYS_SPAWN_FIBER - Spawn new fiber with target binary
|
|
# Copy path to subject_loading_path for next spawn
|
|
let p = cast[ptr UncheckedArray[char]](a0)
|
|
var i = 0
|
|
while p[i] != '\0' and i < 63:
|
|
subject_loading_path[i] = p[i]
|
|
i += 1
|
|
subject_loading_path[i] = '\0'
|
|
kprint("[Kernel] Spawning fiber for: ")
|
|
kprintln(cast[cstring](addr subject_loading_path[0]))
|
|
# Re-initialize fiber_subject with new binary
|
|
# The ION fiber will pick this up and restart the Subject fiber
|
|
var pkt = CmdPacket(kind: uint32(CMD_SPAWN_FIBER), arg: 0)
|
|
|
|
# DEBUG: Check if send works
|
|
if chan_cmd.send(pkt):
|
|
kprintln("[Kernel] CMD_SPAWN_FIBER sent to ION.")
|
|
else:
|
|
kprintln("[Kernel] CRITICAL: Failed to send CMD_SPAWN_FIBER to ION!")
|
|
|
|
# Return fiber ID (always 4 for Subject currently)
|
|
return 4
|
|
else: return 0
|
|
|
|
# --- KERNEL BOOT ---
|
|
|
|
proc ion_wait_multi*(mask: uint64): int32 {.exportc, cdecl.} =
|
|
## Block the current fiber until data is available on any of the masked slots
|
|
current_fiber.blocked_on_mask = mask
|
|
current_fiber.is_blocked = true
|
|
fiber_yield()
|
|
return 0
|
|
|
|
proc kmain() {.exportc, cdecl.} =
|
|
var next_mmio_addr {.importc: "virtio_pci_next_mmio_addr", nodecl.}: uint32
|
|
kprintln("\nNexus Sovereign Core v1.1.2 Starting...")
|
|
|
|
# HAL Hardware Inits
|
|
# rumpk_net_init() -- Moved below
|
|
|
|
ion_pool_init()
|
|
proc mm_init() {.importc, cdecl.}
|
|
proc mm_enable_kernel_paging() {.importc, cdecl.}
|
|
mm_init()
|
|
mm_enable_kernel_paging()
|
|
|
|
# HAL Hardware Inits (Moved after ION/MM init)
|
|
rumpk_net_init()
|
|
|
|
# Ground Zero Phase 1: Initialize Capability System (SPEC-051)
|
|
init_cspace_subsystem()
|
|
kprintln("[CSpace] Capability system initialized")
|
|
|
|
# Ground Zero Phase 2: Initialize System Truth Ledger (SPEC-060)
|
|
init_stl_subsystem()
|
|
let boot_id = emit_system_boot()
|
|
|
|
ion_init_input()
|
|
ion_init_network() # Initialize net rings early
|
|
hal_io_init()
|
|
pty_init()
|
|
discard pty_alloc()
|
|
term.term_init()
|
|
|
|
vfs_init(addr initrd_start, addr initrd_end)
|
|
vfs_mount_init()
|
|
|
|
# DEBUG: List Files
|
|
kprintln("[VFS] Boot Inventory:")
|
|
var buf: array[512, byte]
|
|
let n = ion_vfs_list(addr buf[0], 512)
|
|
if n > 0:
|
|
kprintln(cast[cstring](addr buf[0]))
|
|
|
|
# Set initial loading path for Init (Subject)
|
|
let initial_path = "/sysro/init"
|
|
copyMem(addr subject_loading_path[0], unsafeAddr initial_path[0], initial_path.len + 1)
|
|
kprint("[ION] Subject Zero Path: "); kprintln(cast[cstring](addr subject_loading_path[0]))
|
|
|
|
let sys = cast[ptr SysTable](SYSTABLE_BASE)
|
|
sys.fn_vfs_open = ion_vfs_open
|
|
sys.fn_vfs_read = ion_vfs_read
|
|
sys.fn_vfs_list = ion_vfs_list
|
|
sys.fn_vfs_write = wrapper_vfs_write
|
|
sys.fn_vfs_dup = ion_vfs_dup
|
|
sys.fn_vfs_dup2 = ion_vfs_dup2
|
|
sys.fn_wait_multi = ion_wait_multi
|
|
# Point to user slab allocator (shared memory) instead of kernel pool
|
|
sys.fn_ion_alloc = ion_user_alloc_systable
|
|
sys.fn_ion_free = ion_user_free_systable
|
|
|
|
# Populate Network MAC
|
|
proc virtio_net_get_mac(out_mac: ptr byte) {.importc, cdecl.}
|
|
virtio_net_get_mac(addr sys.net_mac[0])
|
|
kprint("[Kernel] MAC Address: ")
|
|
for i in 0 ..< 6:
|
|
kprint_hex8(sys.net_mac[i])
|
|
if i < 5: kprint(":")
|
|
kprintln("")
|
|
|
|
# Initialize user slab bitmap (at offset 0x100, 16 bytes for 128 slots)
|
|
let bitmap = cast[ptr array[16, byte]](SYSTABLE_BASE + 0x100)
|
|
for i in 0 ..< 16:
|
|
bitmap[i] = 0 # All slots free
|
|
|
|
# Shared Rings Setup (SYSTABLE area)
|
|
# Layout: 0x0000=SysTable, 0x0100=Bitmap, 0x2000=RX, 0x4000=TX, 0x6000=Event, 0x8000=CMD, 0xA000=Input
|
|
# 0xC000=Net_RX, 0xE000=Net_TX, 0x10000=User_Slab
|
|
# Each ring is ~6KB-8KB, so we need 8KB (0x2000) spacing.
|
|
chan_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x2000)
|
|
chan_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x4000)
|
|
let ring_event = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x6000)
|
|
chan_cmd.ring = cast[ptr HAL_Ring[CmdPacket]](SYSTABLE_BASE + 0x8000)
|
|
chan_input.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xA000)
|
|
|
|
# Network Rings (Shared with Userland)
|
|
chan_net_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xC000)
|
|
chan_net_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xE000)
|
|
|
|
# Project LibWeb: LWF Rings (after user slab at 0x110000)
|
|
chan_lwf_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x110000)
|
|
chan_lwf_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x112000)
|
|
|
|
# Initialize Shared Memory Rings
|
|
chan_rx.ring.mask = 255; chan_tx.ring.mask = 255
|
|
ring_event.mask = 255; chan_cmd.ring.mask = 255
|
|
chan_input.ring.mask = 255
|
|
chan_net_rx.ring.mask = 255; chan_net_tx.ring.mask = 255
|
|
chan_lwf_rx.ring.mask = 255; chan_lwf_tx.ring.mask = 255
|
|
# Force reset pointers to zero
|
|
chan_rx.ring.head = 0; chan_rx.ring.tail = 0
|
|
chan_tx.ring.head = 0; chan_tx.ring.tail = 0
|
|
ring_event.head = 0; ring_event.tail = 0
|
|
chan_cmd.ring.head = 0; chan_cmd.ring.tail = 0
|
|
chan_input.ring.head = 0; chan_input.ring.tail = 0
|
|
chan_net_rx.ring.head = 0; chan_net_rx.ring.tail = 0
|
|
chan_net_tx.ring.head = 0; chan_net_tx.ring.tail = 0
|
|
chan_lwf_rx.ring.head = 0; chan_lwf_rx.ring.tail = 0
|
|
chan_lwf_tx.ring.head = 0; chan_lwf_tx.ring.tail = 0
|
|
|
|
sys.s_rx = chan_rx.ring; sys.s_tx = chan_tx.ring; sys.s_event = ring_event
|
|
sys.s_cmd = chan_cmd.ring; sys.s_input = chan_input.ring
|
|
|
|
# Map Network Rings (Now in shared memory)
|
|
sys.s_net_rx = chan_net_rx.ring
|
|
sys.s_net_tx = chan_net_tx.ring
|
|
|
|
# Project LibWeb: Map LWF Rings
|
|
sys.s_lwf_rx = chan_lwf_rx.ring
|
|
sys.s_lwf_tx = chan_lwf_tx.ring
|
|
|
|
sys.magic = 0x4E585553
|
|
sys.fb_addr = fb_kern_get_addr()
|
|
sys.fb_width = 1920; sys.fb_height = 1080; sys.fb_stride = 1920 * 4; sys.fb_bpp = 32
|
|
|
|
# Spawn Fibers
|
|
fiber_ion.id = 1; fiber_nexshell.id = 2; fiber_compositor.id = 3
|
|
fiber_subject.id = 4; fiber_child.id = 5; fiber_netswitch.id = 6
|
|
|
|
init_fiber(addr fiber_ion, ion_fiber_entry, addr stack_ion[0], sizeof(stack_ion))
|
|
let ion_spawn_id = emit_fiber_spawn(1, 0, boot_id) # ION fiber
|
|
discard ion_spawn_id
|
|
|
|
init_fiber(addr fiber_compositor, compositor_fiber_entry, addr stack_compositor[0], sizeof(stack_compositor))
|
|
let compositor_spawn_id = emit_fiber_spawn(3, 0, boot_id) # Compositor fiber
|
|
discard compositor_spawn_id
|
|
|
|
init_fiber(addr fiber_nexshell, nexshell_fiber_entry, addr stack_nexshell[0], sizeof(stack_nexshell))
|
|
let shell_spawn_id = emit_fiber_spawn(2, 0, boot_id) # NexShell fiber
|
|
|
|
# NetSwitch Spawn
|
|
init_fiber(addr fiber_netswitch, fiber_netswitch_entry, addr stack_netswitch[0], sizeof(stack_netswitch))
|
|
let netswitch_spawn_id = emit_fiber_spawn(6, 0, boot_id) # NetSwitch fiber
|
|
discard netswitch_spawn_id
|
|
|
|
init_fiber(addr fiber_subject, subject_fiber_entry, addr stack_subject[0], sizeof(stack_subject))
|
|
let subject_spawn_id = emit_fiber_spawn(4, 0, boot_id) # Subject fiber
|
|
|
|
# Ground Zero Phase 1: Grant Initial Capabilities (SPEC-051)
|
|
# Grant console I/O to NexShell (fiber 2)
|
|
discard fiber_grant_channel(2, 0x1000, PERM_READ or PERM_WRITE) # console.input
|
|
discard emit_capability_grant(2, 2, 0x1000, 0, shell_spawn_id) # Log event
|
|
|
|
discard fiber_grant_channel(2, 0x1001, PERM_READ or PERM_WRITE) # console.output
|
|
discard emit_capability_grant(2, 2, 0x1001, 1, shell_spawn_id) # Log event
|
|
kprintln("[CSpace] Granted console capabilities to NexShell")
|
|
|
|
# M4.4: Subject (fiber 4) capabilities are now manifest-driven.
|
|
# The BKDL manifest in the ELF binary declares what it needs.
|
|
# Grants are applied in subject_fiber_entry via kload_manifest_tar + apply_manifest.
|
|
kprintln("[CSpace] Subject capabilities deferred to BKDL manifest")
|
|
|
|
# Grant Network I/O (RX/TX) — kernel fibers only
|
|
# NetSwitch (Fiber 6): Full access to shuttle packets
|
|
discard fiber_grant_channel(6, 0x500, PERM_READ or PERM_WRITE) # CMD_NET_TX
|
|
discard fiber_grant_channel(6, 0x501, PERM_READ or PERM_WRITE) # CMD_NET_RX
|
|
kprintln("[CSpace] Granted network capabilities to NetSwitch")
|
|
|
|
# M4: Grant VFS capabilities — kernel fibers only
|
|
discard fiber_grant_channel(1, 0x2000, PERM_READ or PERM_WRITE) # ION: VFS (ELF loading)
|
|
discard fiber_grant_channel(1, 0x1000, PERM_READ or PERM_WRITE) # ION: console.input
|
|
discard fiber_grant_channel(1, 0x1001, PERM_READ or PERM_WRITE) # ION: console.output
|
|
discard fiber_grant_channel(2, 0x2000, PERM_READ or PERM_WRITE) # NexShell: VFS
|
|
kprintln("[CSpace] Granted VFS capabilities to kernel fibers")
|
|
|
|
# Init (Subject) lives in Cell 0 — Needs 64MB for large BSS
|
|
fiber_subject.phys_offset = CELL0_BASE
|
|
let init_size = 64 * 1024 * 1024'u64
|
|
fiber_subject.satp_value = mm_create_worker_map(cast[uint64](addr stack_subject[0]), uint64(sizeof(stack_subject)), SYSTABLE_BASE, fiber_subject.phys_offset, init_size)
|
|
|
|
# Interrupt Setup (Architecture-specific)
|
|
when defined(riscv64):
|
|
asm "csrsi sstatus, 2"
|
|
{.emit: "asm volatile(\"csrs sie, %0\" : : \"r\"(1L << 9));".}
|
|
let plic_base = 0x0c000000'u64
|
|
# Priority (each IRQ has a 4-byte priority register)
|
|
cast[ptr uint32](plic_base + 40)[] = 1 # UART (IRQ 10: 10*4 = 40)
|
|
|
|
# Enable (Supervisor Context 1)
|
|
# IRQs 0-31 (Enable IRQ 10 = UART)
|
|
cast[ptr uint32](plic_base + 0x2000 + 0x80)[] = (1'u32 shl 10)
|
|
|
|
# Threshold
|
|
cast[ptr uint32](plic_base + 0x201000)[] = 0
|
|
|
|
let en_addr = plic_base + 0x2000 + 0x80
|
|
let en_val = cast[ptr uint32](en_addr)[]
|
|
kprint("[PLIC] UART Enable Register at "); kprint_hex(en_addr)
|
|
kprint(" is "); kprint_hex(uint64(en_val)); kprintln("")
|
|
elif defined(arm64):
|
|
# GICv2 is initialized in aarch64_init() before Nim entry
|
|
kprintln("[GIC] Interrupts configured by HAL")
|
|
|
|
active_fibers_arr[0] = addr fiber_ion; active_fibers_arr[1] = addr fiber_nexshell
|
|
active_fibers_arr[2] = addr fiber_compositor; active_fibers_arr[3] = addr fiber_netswitch
|
|
active_fibers_arr[4] = addr fiber_subject
|
|
active_fibers_arr[5] = addr fiber_child
|
|
active_fibers_arr[6] = current_fiber
|
|
|
|
# Set Spectrums (Priorities)
|
|
(addr fiber_ion).setSpectrum(Spectrum.Photon)
|
|
(addr fiber_compositor).setSpectrum(Spectrum.Photon)
|
|
(addr fiber_netswitch).setSpectrum(Spectrum.Photon)
|
|
(addr fiber_nexshell).setSpectrum(Spectrum.Matter) # Interactive
|
|
(addr fiber_subject).setSpectrum(Spectrum.Matter) # Elevated from Void
|
|
(addr fiber_child).setSpectrum(Spectrum.Matter) # Elevated from Void
|
|
current_fiber.setSpectrum(Spectrum.Void) # Main loop (dispatcher)
|
|
|
|
# M4.5: Kinetic Economy — default budgets per Spectrum tier
|
|
(addr fiber_ion).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
|
(addr fiber_compositor).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
|
(addr fiber_netswitch).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
|
(addr fiber_nexshell).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
|
(addr fiber_subject).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
|
(addr fiber_child).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
|
# Void (main loop): budget_ns = 0 → unlimited (already default)
|
|
|
|
# M4: Set initial pledge masks (using top-level set_pledge)
|
|
fiber_ion.set_pledge(PLEDGE_ALL)
|
|
fiber_compositor.set_pledge(PLEDGE_ALL)
|
|
fiber_netswitch.set_pledge(PLEDGE_ALL)
|
|
fiber_nexshell.set_pledge(PLEDGE_STDIO or PLEDGE_RPATH or PLEDGE_WPATH or PLEDGE_EXEC)
|
|
# M4.4: Subject/child pledge is set by BKDL manifest in subject_fiber_entry.
|
|
# Start with PLEDGE_STDIO as safe default (manifest will override).
|
|
fiber_subject.set_pledge(PLEDGE_STDIO)
|
|
fiber_child.set_pledge(PLEDGE_STDIO)
|
|
kprintln("[M4] Pledge masks applied (Subject/child: manifest-driven)")
|
|
|
|
# Ground Zero Phase 2: Introspection
|
|
stl_print_summary()
|
|
|
|
kprintln("[Rumpk] Multi-Fiber Dispatcher starting...")
|
|
switch(addr fiber_ion)
|
|
# Exported from Zig
|
|
proc uart_poll_input() {.importc, cdecl.}
|
|
|
|
while true:
|
|
# ⌨️ Hardware Input Driver (Polling fallback)
|
|
uart_poll_input()
|
|
|
|
if not sched_tick_spectrum(active_fibers_arr):
|
|
# Wait for data or timeout
|
|
fiber_sleep(1)
|