feat(core): M4 security — CSpace, Pledge, STL, budget enforcement, BKDL manifests
This commit is contained in:
parent
8d4b581519
commit
0c598ce0bd
|
|
@ -27,6 +27,7 @@ proc cspace_grant_cap*(
|
||||||
proc cspace_lookup*(fiber_id: uint64, slot: uint): pointer {.importc, cdecl.}
|
proc cspace_lookup*(fiber_id: uint64, slot: uint): pointer {.importc, cdecl.}
|
||||||
proc cspace_revoke*(fiber_id: uint64, slot: uint) {.importc, cdecl.}
|
proc cspace_revoke*(fiber_id: uint64, slot: uint) {.importc, cdecl.}
|
||||||
proc cspace_check_perm*(fiber_id: uint64, slot: uint, perm_bits: uint8): bool {.importc, cdecl.}
|
proc cspace_check_perm*(fiber_id: uint64, slot: uint, perm_bits: uint8): bool {.importc, cdecl.}
|
||||||
|
proc cspace_check_channel*(fiber_id: uint64, channel_id: uint64, perm_bits: uint8): bool {.importc, cdecl.}
|
||||||
|
|
||||||
## Capability Types (Mirror from cspace.zig)
|
## Capability Types (Mirror from cspace.zig)
|
||||||
type
|
type
|
||||||
|
|
@ -80,10 +81,10 @@ proc fiber_grant_memory*(
|
||||||
end_addr
|
end_addr
|
||||||
)
|
)
|
||||||
|
|
||||||
proc fiber_check_channel_access*(fiber_id: uint64, slot: uint, write: bool): bool =
|
proc fiber_check_channel_access*(fiber_id: uint64, channel_id: uint64, write: bool): bool =
|
||||||
## Check if fiber has channel access via capability
|
## Check if fiber has Channel capability for given channel_id
|
||||||
let perm = if write: PERM_WRITE else: PERM_READ
|
let perm = if write: PERM_WRITE else: PERM_READ
|
||||||
return cspace_check_perm(fiber_id, slot, perm)
|
return cspace_check_channel(fiber_id, channel_id, perm)
|
||||||
|
|
||||||
proc fiber_revoke_capability*(fiber_id: uint64, slot: uint) =
|
proc fiber_revoke_capability*(fiber_id: uint64, slot: uint) =
|
||||||
## Revoke a capability from a fiber
|
## Revoke a capability from a fiber
|
||||||
|
|
|
||||||
|
|
@ -24,6 +24,10 @@ when defined(riscv64):
|
||||||
const ARCH_NAME* = "riscv64"
|
const ARCH_NAME* = "riscv64"
|
||||||
const CONTEXT_SIZE* = 128
|
const CONTEXT_SIZE* = 128
|
||||||
const RET_ADDR_INDEX* = 0 # Offset in stack for RA
|
const RET_ADDR_INDEX* = 0 # Offset in stack for RA
|
||||||
|
elif defined(arm64):
|
||||||
|
const ARCH_NAME* = "aarch64"
|
||||||
|
const CONTEXT_SIZE* = 96 # 6 register pairs (x19-x30) * 16 bytes
|
||||||
|
const RET_ADDR_INDEX* = 11 # x30 (LR) at [sp + 88] = index 11
|
||||||
elif defined(amd64) or defined(x86_64):
|
elif defined(amd64) or defined(x86_64):
|
||||||
const ARCH_NAME* = "amd64"
|
const ARCH_NAME* = "amd64"
|
||||||
const CONTEXT_SIZE* = 64
|
const CONTEXT_SIZE* = 64
|
||||||
|
|
@ -112,7 +116,7 @@ const STACK_SIZE* = 4096
|
||||||
# Fiber State
|
# Fiber State
|
||||||
# =========================================================
|
# =========================================================
|
||||||
|
|
||||||
var main_fiber: FiberObject
|
var main_fiber*: FiberObject
|
||||||
var current_fiber* {.global.}: Fiber = addr main_fiber
|
var current_fiber* {.global.}: Fiber = addr main_fiber
|
||||||
|
|
||||||
# =========================================================
|
# =========================================================
|
||||||
|
|
@ -135,6 +139,9 @@ proc fiber_trampoline() {.cdecl, exportc, noreturn.} =
|
||||||
when defined(riscv64):
|
when defined(riscv64):
|
||||||
while true:
|
while true:
|
||||||
{.emit: "asm volatile(\"wfi\");".}
|
{.emit: "asm volatile(\"wfi\");".}
|
||||||
|
elif defined(arm64):
|
||||||
|
while true:
|
||||||
|
{.emit: "asm volatile(\"wfe\");".}
|
||||||
else:
|
else:
|
||||||
while true: discard
|
while true: discard
|
||||||
|
|
||||||
|
|
|
||||||
25
core/ion.nim
25
core/ion.nim
|
|
@ -91,6 +91,8 @@ type
|
||||||
fn_vfs_list*: proc(buf: pointer, max_len: uint64): int64 {.cdecl.}
|
fn_vfs_list*: proc(buf: pointer, max_len: uint64): int64 {.cdecl.}
|
||||||
fn_vfs_write*: proc(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.}
|
fn_vfs_write*: proc(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.}
|
||||||
fn_vfs_close*: proc(fd: int32): int32 {.cdecl.}
|
fn_vfs_close*: proc(fd: int32): int32 {.cdecl.}
|
||||||
|
fn_vfs_dup*: proc(fd: int32, min_fd: int32): int32 {.cdecl.}
|
||||||
|
fn_vfs_dup2*: proc(old_fd, new_fd: int32): int32 {.cdecl.}
|
||||||
fn_log*: pointer
|
fn_log*: pointer
|
||||||
fn_pledge*: proc(promises: uint64): int32 {.cdecl.}
|
fn_pledge*: proc(promises: uint64): int32 {.cdecl.}
|
||||||
|
|
||||||
|
|
@ -123,6 +125,10 @@ type
|
||||||
net_mac*: array[6, byte]
|
net_mac*: array[6, byte]
|
||||||
reserved_mac*: array[2, byte]
|
reserved_mac*: array[2, byte]
|
||||||
|
|
||||||
|
# Project LibWeb: LWF Sovereign Channel (16 bytes)
|
||||||
|
s_lwf_rx*: ptr HAL_Ring[IonPacket] # Kernel Producer -> User Consumer (LWF frames)
|
||||||
|
s_lwf_tx*: ptr HAL_Ring[IonPacket] # User Producer -> Kernel Consumer (LWF frames)
|
||||||
|
|
||||||
include invariant
|
include invariant
|
||||||
|
|
||||||
# --- Sovereign Logic ---
|
# --- Sovereign Logic ---
|
||||||
|
|
@ -167,6 +173,12 @@ var net_rx_hal: HAL_Ring[IonPacket]
|
||||||
var net_tx_hal: HAL_Ring[IonPacket]
|
var net_tx_hal: HAL_Ring[IonPacket]
|
||||||
var netswitch_rx_hal: HAL_Ring[IonPacket]
|
var netswitch_rx_hal: HAL_Ring[IonPacket]
|
||||||
|
|
||||||
|
# Project LibWeb: LWF Sovereign Channels
|
||||||
|
var chan_lwf_rx*: SovereignChannel[IonPacket] # Kernel -> User (LWF frames)
|
||||||
|
var chan_lwf_tx*: SovereignChannel[IonPacket] # User -> Kernel (LWF frames)
|
||||||
|
var lwf_rx_hal: HAL_Ring[IonPacket]
|
||||||
|
var lwf_tx_hal: HAL_Ring[IonPacket]
|
||||||
|
|
||||||
proc ion_init_input*() {.exportc, cdecl.} =
|
proc ion_init_input*() {.exportc, cdecl.} =
|
||||||
guest_input_hal.head = 0
|
guest_input_hal.head = 0
|
||||||
guest_input_hal.tail = 0
|
guest_input_hal.tail = 0
|
||||||
|
|
@ -192,6 +204,17 @@ proc ion_init_network*() {.exportc, cdecl.} =
|
||||||
netswitch_rx_hal.mask = 255
|
netswitch_rx_hal.mask = 255
|
||||||
chan_netswitch_rx.ring = addr netswitch_rx_hal
|
chan_netswitch_rx.ring = addr netswitch_rx_hal
|
||||||
|
|
||||||
|
# Project LibWeb: LWF Rings
|
||||||
|
lwf_rx_hal.head = 0
|
||||||
|
lwf_rx_hal.tail = 0
|
||||||
|
lwf_rx_hal.mask = 255
|
||||||
|
chan_lwf_rx.ring = addr lwf_rx_hal
|
||||||
|
|
||||||
|
lwf_tx_hal.head = 0
|
||||||
|
lwf_tx_hal.tail = 0
|
||||||
|
lwf_tx_hal.mask = 255
|
||||||
|
chan_lwf_tx.ring = addr lwf_tx_hal
|
||||||
|
|
||||||
# Initialize user slab
|
# Initialize user slab
|
||||||
ion_user_slab_init()
|
ion_user_slab_init()
|
||||||
|
|
||||||
|
|
@ -218,4 +241,4 @@ proc ion_user_free_systable*(id: uint16) {.exportc, cdecl.} =
|
||||||
|
|
||||||
static: doAssert(sizeof(IonPacket) == 24, "IonPacket size mismatch!")
|
static: doAssert(sizeof(IonPacket) == 24, "IonPacket size mismatch!")
|
||||||
static: doAssert(sizeof(CmdPacket) == 32, "CmdPacket size mismatch!")
|
static: doAssert(sizeof(CmdPacket) == 32, "CmdPacket size mismatch!")
|
||||||
static: doAssert(sizeof(SysTable) == 208, "SysTable size mismatch! (Expected 208 after MAC+pad)")
|
static: doAssert(sizeof(SysTable) == 240, "SysTable size mismatch! (Expected 240 after LibWeb LWF channels)")
|
||||||
|
|
|
||||||
|
|
@ -13,17 +13,24 @@
|
||||||
import ../ring
|
import ../ring
|
||||||
|
|
||||||
proc console_write(p: pointer, len: csize_t) {.importc, cdecl.}
|
proc console_write(p: pointer, len: csize_t) {.importc, cdecl.}
|
||||||
proc dbg(s: string) =
|
|
||||||
console_write(unsafeAddr s[0], csize_t(s.len))
|
var NEWLINE_BUF: array[2, char] = ['\n', '\0']
|
||||||
var nl = "\n"
|
|
||||||
console_write(unsafeAddr nl[0], csize_t(1))
|
proc dbg(s: cstring) {.inline.} =
|
||||||
|
if s != nil:
|
||||||
|
var i = 0
|
||||||
|
let p = cast[ptr UncheckedArray[char]](s)
|
||||||
|
while p[i] != '\0': inc i
|
||||||
|
console_write(cast[pointer](s), csize_t(i))
|
||||||
|
console_write(addr NEWLINE_BUF[0], csize_t(1))
|
||||||
|
|
||||||
const
|
const
|
||||||
SLAB_SIZE* = 2048 # Max Packet Size (Ethernet Frame + Headroom)
|
SLAB_SIZE* = 2048 # Max Packet Size (Ethernet Frame + Headroom)
|
||||||
POOL_COUNT* = 1024 # Number of packets in the pool (2MB total RAM)
|
POOL_COUNT* = 1024 # Number of packets in the pool (2MB total RAM)
|
||||||
POOL_ALIGN* = 4096 # VirtIO/Page Alignment
|
POOL_ALIGN* = 4096 # VirtIO/Page Alignment
|
||||||
|
|
||||||
SYSTABLE_BASE = 0x83000000'u64
|
SYSTABLE_BASE = when defined(arm64): 0x50000000'u64
|
||||||
|
else: 0x83000000'u64
|
||||||
USER_SLAB_OFFSET = 0x10000'u64 # Offset within SYSTABLE
|
USER_SLAB_OFFSET = 0x10000'u64 # Offset within SYSTABLE
|
||||||
USER_SLAB_BASE* = SYSTABLE_BASE + USER_SLAB_OFFSET # 0x83010000
|
USER_SLAB_BASE* = SYSTABLE_BASE + USER_SLAB_OFFSET # 0x83010000
|
||||||
USER_SLAB_COUNT = 512 # 512 packets to cover RX Ring (256) + TX
|
USER_SLAB_COUNT = 512 # 512 packets to cover RX Ring (256) + TX
|
||||||
|
|
@ -53,9 +60,11 @@ proc ion_pool_init*() {.exportc.} =
|
||||||
dbg("[ION] Initializing Pool...")
|
dbg("[ION] Initializing Pool...")
|
||||||
|
|
||||||
# 1. Get the VIRTUAL address of the static buffer
|
# 1. Get the VIRTUAL address of the static buffer
|
||||||
|
dbg("[ION] Step 1: Getting virt addr...")
|
||||||
let virt_addr = cast[uint64](addr global_pool.buffer[0])
|
let virt_addr = cast[uint64](addr global_pool.buffer[0])
|
||||||
|
|
||||||
# 2. Translate to PHYSICAL (Identity Mapped for Phase 7)
|
# 2. Translate to PHYSICAL (Identity Mapped for Phase 7)
|
||||||
|
dbg("[ION] Step 2: Setting base phys...")
|
||||||
global_pool.base_phys = virt_addr
|
global_pool.base_phys = virt_addr
|
||||||
|
|
||||||
# Tracing for Phase 37
|
# Tracing for Phase 37
|
||||||
|
|
@ -64,12 +73,16 @@ proc ion_pool_init*() {.exportc.} =
|
||||||
kprint_hex(global_pool.base_phys)
|
kprint_hex(global_pool.base_phys)
|
||||||
dbg("")
|
dbg("")
|
||||||
|
|
||||||
dbg("[ION] Ring Init...")
|
dbg("[ION] Step 3: Ring Init (free_ring)...")
|
||||||
|
dbg(" 3a: About to call init()")
|
||||||
global_pool.free_ring.init()
|
global_pool.free_ring.init()
|
||||||
|
dbg(" 3b: free_ring init complete")
|
||||||
|
dbg("[ION] Step 4: Ring Init (tx_ring)...")
|
||||||
global_tx_ring.init()
|
global_tx_ring.init()
|
||||||
|
dbg(" 4a: tx_ring init complete")
|
||||||
|
|
||||||
# Fill the free ring with all indices [0..1023]
|
# Fill the free ring with all indices [0..1023]
|
||||||
dbg("[ION] Filling Slabs...")
|
dbg("[ION] Step 5: Filling Slabs...")
|
||||||
var count = 0
|
var count = 0
|
||||||
for i in 0 ..< POOL_COUNT:
|
for i in 0 ..< POOL_COUNT:
|
||||||
if global_pool.free_ring.push(uint16(i)):
|
if global_pool.free_ring.push(uint16(i)):
|
||||||
|
|
@ -77,6 +90,8 @@ proc ion_pool_init*() {.exportc.} =
|
||||||
|
|
||||||
dbg("[ION] Pool Ready.")
|
dbg("[ION] Pool Ready.")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
proc ion_alloc*(): IonPacket {.exportc.} =
|
proc ion_alloc*(): IonPacket {.exportc.} =
|
||||||
## O(1) Allocation. Returns an empty packet struct.
|
## O(1) Allocation. Returns an empty packet struct.
|
||||||
## If OOM, returns packet with data = nil
|
## If OOM, returns packet with data = nil
|
||||||
|
|
|
||||||
551
core/kernel.nim
551
core/kernel.nim
|
|
@ -12,11 +12,22 @@ import fiber, ion, sched, pty, cspace, ontology, fastpath, utcp
|
||||||
import fs/vfs, fs/tar
|
import fs/vfs, fs/tar
|
||||||
import loader/elf
|
import loader/elf
|
||||||
import ../libs/membrane/term
|
import ../libs/membrane/term
|
||||||
|
import ../libs/membrane/net_glue
|
||||||
|
|
||||||
const
|
const
|
||||||
MAX_WORKERS* = 8
|
MAX_WORKERS* = 8
|
||||||
MAX_FIBER_STACK* = 128 * 1024
|
MAX_FIBER_STACK* = 128 * 1024
|
||||||
SYSTABLE_BASE* = 0x83000000'u64
|
SYSTABLE_BASE* = when defined(arm64): 0x50000000'u64
|
||||||
|
else: 0x83000000'u64
|
||||||
|
# Cellular Memory Architecture (M3.3)
|
||||||
|
CELL0_BASE* = when defined(arm64): 0x48000000'u64
|
||||||
|
else: 0x88000000'u64
|
||||||
|
CELL1_BASE* = when defined(arm64): 0x4C000000'u64
|
||||||
|
else: 0x8C000000'u64
|
||||||
|
USER_VA_BASE* = when defined(arm64): 0x48000000'u64
|
||||||
|
else: 0x88000000'u64
|
||||||
|
USER_SP_FALLBACK* = when defined(arm64): 0x4BFFFFF0'u64
|
||||||
|
else: 0x8BFFFFF0'u64
|
||||||
|
|
||||||
# Export Nim Timer Handler for HAL (Zig calls this)
|
# Export Nim Timer Handler for HAL (Zig calls this)
|
||||||
proc rumpk_timer_handler() {.exportc, cdecl, used.} =
|
proc rumpk_timer_handler() {.exportc, cdecl, used.} =
|
||||||
|
|
@ -35,6 +46,7 @@ proc nexshell_main() {.importc, cdecl.}
|
||||||
proc console_poll() {.importc, cdecl.}
|
proc console_poll() {.importc, cdecl.}
|
||||||
proc ion_get_virt(id: uint16): uint64 {.importc, cdecl.}
|
proc ion_get_virt(id: uint16): uint64 {.importc, cdecl.}
|
||||||
|
|
||||||
|
|
||||||
# InitRD Symbols
|
# InitRD Symbols
|
||||||
var initrd_start {.importc: "_initrd_start" .}: byte
|
var initrd_start {.importc: "_initrd_start" .}: byte
|
||||||
var initrd_end {.importc: "_initrd_end" .}: byte
|
var initrd_end {.importc: "_initrd_end" .}: byte
|
||||||
|
|
@ -151,6 +163,7 @@ proc kload_phys(path: cstring, phys_offset: uint64): uint64 =
|
||||||
|
|
||||||
if phdr.p_type == PT_LOAD:
|
if phdr.p_type == PT_LOAD:
|
||||||
# Enable S-mode access to U-mode pages (SUM=1)
|
# Enable S-mode access to U-mode pages (SUM=1)
|
||||||
|
when defined(riscv64):
|
||||||
{.emit: """asm volatile ("li t1, 0x40000; csrs sstatus, t1" : : : "t1");""" .}
|
{.emit: """asm volatile ("li t1, 0x40000; csrs sstatus, t1" : : : "t1");""" .}
|
||||||
|
|
||||||
let dest = cast[ptr UncheckedArray[byte]](phdr.p_vaddr)
|
let dest = cast[ptr UncheckedArray[byte]](phdr.p_vaddr)
|
||||||
|
|
@ -168,11 +181,139 @@ proc kload_phys(path: cstring, phys_offset: uint64): uint64 =
|
||||||
# {.emit: """asm volatile ("li t1, 0x40000; csrc sstatus, t1" : : : "t1");""" .}
|
# {.emit: """asm volatile ("li t1, 0x40000; csrc sstatus, t1" : : : "t1");""" .}
|
||||||
|
|
||||||
# ⚡ ARCH-SYNC: Flush I-Cache after loading new code
|
# ⚡ ARCH-SYNC: Flush I-Cache after loading new code
|
||||||
|
when defined(riscv64):
|
||||||
{.emit: """asm volatile ("fence.i" : : : "memory");""" .}
|
{.emit: """asm volatile ("fence.i" : : : "memory");""" .}
|
||||||
|
elif defined(arm64):
|
||||||
|
{.emit: """asm volatile ("ic iallu; dsb ish; isb" : : : "memory");""" .}
|
||||||
|
|
||||||
discard ion_vfs_close(fd)
|
discard ion_vfs_close(fd)
|
||||||
return ehdr.e_entry
|
return ehdr.e_entry
|
||||||
|
|
||||||
|
# --- M4.4: MANIFEST-DRIVEN CAPABILITY LOADING ---
|
||||||
|
|
||||||
|
proc set_pledge*(f: var FiberObject, pledge: uint64) =
|
||||||
|
## Set fiber pledge mask, preserving Spectrum bits [63:62]
|
||||||
|
f.promises = (f.promises and 0xC000000000000000'u64) or (pledge and 0x3FFFFFFFFFFFFFFF'u64)
|
||||||
|
|
||||||
|
proc kload_manifest_tar(path: cstring): ManifestResult =
|
||||||
|
## Scan ELF section headers via TAR for .nexus.manifest containing BKDL data.
|
||||||
|
## Uses tar.vfs_read_at() for selective reads (same approach as kload_phys).
|
||||||
|
result.header = nil
|
||||||
|
result.caps = nil
|
||||||
|
result.count = 0
|
||||||
|
|
||||||
|
# Strip /sysro prefix for TAR paths (same logic as kload_phys)
|
||||||
|
var tar_path = path
|
||||||
|
if path[0] == '/':
|
||||||
|
tar_path = cast[cstring](cast[uint64](path) + 1)
|
||||||
|
if k_starts_with(path, "/sysro"):
|
||||||
|
tar_path = cast[cstring](cast[uint64](path) + 6)
|
||||||
|
if tar_path[0] == '/': tar_path = cast[cstring](cast[uint64](tar_path) + 1)
|
||||||
|
|
||||||
|
# 1. Read ELF header
|
||||||
|
var ehdr: Elf64_Ehdr
|
||||||
|
if tar.vfs_read_at(tar_path, addr ehdr, uint64(sizeof(ehdr)), 0) != int64(sizeof(ehdr)):
|
||||||
|
return
|
||||||
|
if ehdr.e_ident[0] != 0x7F or ehdr.e_ident[1] != 'E'.uint8:
|
||||||
|
return
|
||||||
|
if ehdr.e_shoff == 0 or ehdr.e_shnum == 0 or ehdr.e_shstrndx >= ehdr.e_shnum:
|
||||||
|
return
|
||||||
|
|
||||||
|
# 2. Read shstrtab section header to get string table location
|
||||||
|
let strtab_offset = ehdr.e_shoff + uint64(ehdr.e_shstrndx) * uint64(ehdr.e_shentsize)
|
||||||
|
var strtab_shdr: Elf64_Shdr
|
||||||
|
if tar.vfs_read_at(tar_path, addr strtab_shdr, uint64(sizeof(Elf64_Shdr)), strtab_offset) != int64(sizeof(Elf64_Shdr)):
|
||||||
|
return
|
||||||
|
|
||||||
|
# 3. Read the string table itself (cap at 512 bytes — section names are short)
|
||||||
|
var strtab_buf: array[512, byte]
|
||||||
|
let strtab_read_size = min(strtab_shdr.sh_size, 512'u64)
|
||||||
|
if tar.vfs_read_at(tar_path, addr strtab_buf[0], strtab_read_size, strtab_shdr.sh_offset) != int64(strtab_read_size):
|
||||||
|
return
|
||||||
|
|
||||||
|
# 4. Scan section headers for .nexus.manifest
|
||||||
|
let target = cstring(".nexus.manifest")
|
||||||
|
for i in 0 ..< int(ehdr.e_shnum):
|
||||||
|
var shdr: Elf64_Shdr
|
||||||
|
let sh_offset = ehdr.e_shoff + uint64(i) * uint64(ehdr.e_shentsize)
|
||||||
|
if tar.vfs_read_at(tar_path, addr shdr, uint64(sizeof(Elf64_Shdr)), sh_offset) != int64(sizeof(Elf64_Shdr)):
|
||||||
|
continue
|
||||||
|
|
||||||
|
if shdr.sh_name < uint32(strtab_read_size):
|
||||||
|
|
||||||
|
# Compare section name against ".nexus.manifest"
|
||||||
|
var match = true
|
||||||
|
var j = 0
|
||||||
|
while j < 16: # len(".nexus.manifest") + null = 16
|
||||||
|
let ch = target[j]
|
||||||
|
let idx = int(shdr.sh_name) + j
|
||||||
|
if idx >= int(strtab_read_size):
|
||||||
|
match = false
|
||||||
|
break
|
||||||
|
if ch == '\0':
|
||||||
|
break # End of target string — all matched
|
||||||
|
if strtab_buf[idx] != byte(ch):
|
||||||
|
match = false
|
||||||
|
break
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
if match and shdr.sh_size >= uint64(sizeof(BkdlHeader)):
|
||||||
|
# 5. Read the manifest section data into a static buffer
|
||||||
|
# Max manifest size: BkdlHeader (118) + 16 caps * CapDescriptor (12) = 310 bytes
|
||||||
|
var manifest_buf {.global.}: array[512, byte]
|
||||||
|
let read_size = min(shdr.sh_size, 512'u64)
|
||||||
|
if tar.vfs_read_at(tar_path, addr manifest_buf[0], read_size, shdr.sh_offset) != int64(read_size):
|
||||||
|
return
|
||||||
|
|
||||||
|
let hdr = cast[ptr BkdlHeader](addr manifest_buf[0])
|
||||||
|
if hdr.magic != BKDL_MAGIC or hdr.version != BKDL_VERSION:
|
||||||
|
kprintln("[Manifest] Invalid BKDL magic/version")
|
||||||
|
return
|
||||||
|
|
||||||
|
let expected = uint64(sizeof(BkdlHeader)) + uint64(hdr.cap_count) * uint64(sizeof(CapDescriptor))
|
||||||
|
if expected > read_size:
|
||||||
|
kprintln("[Manifest] BKDL cap_count exceeds section size")
|
||||||
|
return
|
||||||
|
|
||||||
|
kprint("[Manifest] WARNING: Signature unchecked (dev mode)")
|
||||||
|
kprintln("")
|
||||||
|
discard emit_access_denied(0, 0xB0D1, 0, 0) # STL: signature skip event
|
||||||
|
|
||||||
|
result.header = hdr
|
||||||
|
result.caps = cast[ptr UncheckedArray[CapDescriptor]](addr manifest_buf[sizeof(BkdlHeader)])
|
||||||
|
result.count = int(hdr.cap_count)
|
||||||
|
return
|
||||||
|
|
||||||
|
proc apply_manifest*(fiber_id: uint64, manifest: ManifestResult, pledge_out: var uint64) =
|
||||||
|
## Apply BKDL manifest capabilities to fiber's CSpace.
|
||||||
|
## Derives pledge mask from requested capability types.
|
||||||
|
var derived_pledge: uint64 = PLEDGE_STDIO # Always grant basic I/O
|
||||||
|
|
||||||
|
for i in 0 ..< manifest.count:
|
||||||
|
let cap = manifest.caps[i]
|
||||||
|
let slot = fiber_grant_channel(fiber_id, cap.resource_id, cap.perms)
|
||||||
|
if slot >= 0:
|
||||||
|
discard emit_capability_grant(fiber_id, cap.cap_type, cap.resource_id, uint8(slot), 0)
|
||||||
|
kprint("[Manifest] Granted cap "); kprint_hex(cap.resource_id)
|
||||||
|
kprint(" perms="); kprint_hex(uint64(cap.perms))
|
||||||
|
kprint(" to fiber "); kprint_hex(fiber_id); kprintln("")
|
||||||
|
else:
|
||||||
|
discard emit_access_denied(fiber_id, cap.resource_id, cap.perms, 0)
|
||||||
|
kprint("[Manifest] DENIED cap "); kprint_hex(cap.resource_id)
|
||||||
|
kprint(" for fiber "); kprint_hex(fiber_id); kprintln(" (CSpace full)")
|
||||||
|
|
||||||
|
# Derive pledge bits from capability types
|
||||||
|
if cap.resource_id == 0x2000: # VFS
|
||||||
|
derived_pledge = derived_pledge or PLEDGE_RPATH
|
||||||
|
if (cap.perms and PERM_WRITE) != 0:
|
||||||
|
derived_pledge = derived_pledge or PLEDGE_WPATH
|
||||||
|
elif cap.resource_id == 0x500 or cap.resource_id == 0x501: # NET_TX / NET_RX
|
||||||
|
derived_pledge = derived_pledge or PLEDGE_INET
|
||||||
|
elif cap.resource_id == 0x1000 or cap.resource_id == 0x1001: # Console
|
||||||
|
discard # PLEDGE_STDIO already set
|
||||||
|
|
||||||
|
pledge_out = derived_pledge
|
||||||
|
|
||||||
# --- FIBER ENTRIES ---
|
# --- FIBER ENTRIES ---
|
||||||
|
|
||||||
proc subject_fiber_entry() {.cdecl.} =
|
proc subject_fiber_entry() {.cdecl.} =
|
||||||
|
|
@ -185,13 +326,26 @@ proc subject_fiber_entry() {.cdecl.} =
|
||||||
# Load into Cellular Slot (phys_offset)
|
# Load into Cellular Slot (phys_offset)
|
||||||
let entry_addr = kload_phys(cast[cstring](addr subject_loading_path[0]), current_fiber.phys_offset)
|
let entry_addr = kload_phys(cast[cstring](addr subject_loading_path[0]), current_fiber.phys_offset)
|
||||||
|
|
||||||
|
# M4.4: Scan ELF for BKDL manifest and apply capabilities
|
||||||
|
let loading_path = cast[cstring](addr subject_loading_path[0])
|
||||||
|
let manifest = kload_manifest_tar(loading_path)
|
||||||
|
if manifest.header != nil:
|
||||||
|
kprint("[Manifest] Found BKDL manifest: "); kprint_hex(uint64(manifest.count)); kprintln(" capabilities")
|
||||||
|
var pledge: uint64 = 0
|
||||||
|
apply_manifest(current_fiber.id, manifest, pledge)
|
||||||
|
set_pledge(current_fiber[], pledge)
|
||||||
|
kprint("[Manifest] Pledge mask: "); kprint_hex(pledge); kprintln("")
|
||||||
|
else:
|
||||||
|
kprintln("[Manifest] No BKDL manifest — default policy (STDIO only)")
|
||||||
|
set_pledge(current_fiber[], PLEDGE_STDIO)
|
||||||
|
|
||||||
if entry_addr != 0:
|
if entry_addr != 0:
|
||||||
kprint("[Subject:"); kprint_hex(fid); kprint("] Entering Payload at: "); kprint_hex(entry_addr); kprintln("")
|
kprint("[Subject:"); kprint_hex(fid); kprint("] Entering Payload at: "); kprint_hex(entry_addr); kprintln("")
|
||||||
proc hal_enter_userland(entry, systable, sp: uint64) {.importc, cdecl.}
|
proc hal_enter_userland(entry, systable, sp: uint64) {.importc, cdecl.}
|
||||||
var sp = current_fiber.user_sp_init
|
var sp = current_fiber.user_sp_init
|
||||||
if sp == 0:
|
if sp == 0:
|
||||||
# Fallback (Legacy/Init) - Top of the 64MB Sentinel Cell
|
# Fallback (Legacy/Init) - Top of the 64MB Sentinel Cell
|
||||||
sp = 0x8BFFFFF0'u64
|
sp = USER_SP_FALLBACK
|
||||||
|
|
||||||
kprintln("╔════════════════════════════════════════════════════╗")
|
kprintln("╔════════════════════════════════════════════════════╗")
|
||||||
kprintln("║ PRE-FLIGHT: USERLAND TRANSITION ║")
|
kprintln("║ PRE-FLIGHT: USERLAND TRANSITION ║")
|
||||||
|
|
@ -232,51 +386,71 @@ proc compositor_fiber_entry() {.cdecl.} =
|
||||||
|
|
||||||
proc mm_create_worker_map(stack_base: uint64, stack_size: uint64, packet_addr: uint64, phys_base: uint64, region_size: uint64): uint64 {.importc, cdecl.}
|
proc mm_create_worker_map(stack_base: uint64, stack_size: uint64, packet_addr: uint64, phys_base: uint64, region_size: uint64): uint64 {.importc, cdecl.}
|
||||||
|
|
||||||
proc setup_mksh_stack(stack_base: pointer, stack_size: int): uint64 =
|
proc setup_cellular_stack(phys_base: uint64, slot_size: uint64, user_base: uint64): uint64 =
|
||||||
var sp = cast[uint64](stack_base) + cast[uint64](stack_size)
|
# Stack grows down from the top of the cell
|
||||||
sp = sp and not 15'u64 # Align 16
|
var phys_top = phys_base + slot_size
|
||||||
|
var user_sp = user_base + slot_size
|
||||||
|
|
||||||
# Term String
|
# Align 16
|
||||||
let term_str = "TERM=nexus\0"
|
phys_top = phys_top and not 15'u64
|
||||||
sp -= uint64(term_str.len)
|
user_sp = user_sp and not 15'u64
|
||||||
copyMem(cast[pointer](sp), unsafeAddr term_str[0], term_str.len)
|
|
||||||
let term_addr = sp
|
|
||||||
|
|
||||||
# Path String
|
# Helper to push data
|
||||||
let path_str = "/bin/mksh\0"
|
template push_str(s: string): uint64 =
|
||||||
sp -= uint64(path_str.len)
|
let s_val = s
|
||||||
copyMem(cast[pointer](sp), unsafeAddr path_str[0], path_str.len)
|
let l = uint64(s_val.len) + 1 # + null terminator
|
||||||
let path_addr = sp
|
phys_top -= l
|
||||||
|
user_sp -= l
|
||||||
|
# Zero the memory first (for null safety)
|
||||||
|
k_zero_mem(cast[pointer](phys_top), l)
|
||||||
|
copyMem(cast[pointer](phys_top), unsafeAddr s_val[0], s_val.len)
|
||||||
|
user_sp # Return USER address
|
||||||
|
|
||||||
sp = sp and not 15'u64 # Align 16
|
# Environment strings
|
||||||
|
let home_addr = push_str("HOME=/")
|
||||||
|
let term_addr = push_str("TERM=vt100")
|
||||||
|
let path_addr = push_str("/bin/mksh")
|
||||||
|
|
||||||
|
kprint("[Stack] HOME env at: "); kprint_hex(home_addr); kprint("\n")
|
||||||
|
kprint("[Stack] TERM env at: "); kprint_hex(term_addr); kprint("\n")
|
||||||
|
kprint("[Stack] argv[0] at: "); kprint_hex(path_addr); kprint("\n")
|
||||||
|
|
||||||
|
# Align 16 before pointer arrays
|
||||||
|
phys_top = phys_top and not 15'u64
|
||||||
|
user_sp = user_sp and not 15'u64
|
||||||
|
|
||||||
|
# Helper to push uint64
|
||||||
|
template push_u64(val: uint64) =
|
||||||
|
phys_top -= 8
|
||||||
|
user_sp -= 8
|
||||||
|
cast[ptr uint64](phys_top)[] = val
|
||||||
|
|
||||||
# Auxv (0, 0)
|
# Auxv (0, 0)
|
||||||
sp -= 16
|
push_u64(0)
|
||||||
cast[ptr uint64](sp)[] = 0
|
push_u64(0)
|
||||||
cast[ptr uint64](sp+8)[] = 0
|
|
||||||
|
|
||||||
# Envp (term, NULL)
|
# Envp (NULL, TERM, HOME) - Reverse order of push
|
||||||
sp -= 16
|
push_u64(0)
|
||||||
cast[ptr uint64](sp)[] = term_addr
|
push_u64(term_addr)
|
||||||
cast[ptr uint64](sp+8)[] = 0
|
push_u64(home_addr)
|
||||||
|
|
||||||
# Argv (path, NULL)
|
# Argv (NULL, path)
|
||||||
sp -= 16
|
push_u64(0)
|
||||||
cast[ptr uint64](sp)[] = path_addr
|
push_u64(path_addr)
|
||||||
cast[ptr uint64](sp+8)[] = 0
|
|
||||||
|
|
||||||
# Argc (1)
|
# Argc (1)
|
||||||
sp -= 8
|
push_u64(1)
|
||||||
cast[ptr uint64](sp)[] = 1
|
|
||||||
|
|
||||||
return sp
|
kprint("[Stack] Final SP: "); kprint_hex(user_sp); kprint("\n")
|
||||||
|
|
||||||
|
return user_sp
|
||||||
|
|
||||||
proc ion_fiber_entry() {.cdecl.} =
|
proc ion_fiber_entry() {.cdecl.} =
|
||||||
kprintln("[ION] Fiber Entry reached.")
|
kprintln("[ION] Fiber Entry reached.")
|
||||||
while true:
|
while true:
|
||||||
var pkt: CmdPacket
|
var pkt: CmdPacket
|
||||||
if chan_cmd.recv(pkt):
|
if chan_cmd.recv(pkt):
|
||||||
kprint("[ION] Received Packet Kind: "); kprint_hex(uint64(pkt.kind))
|
kprint("[ION] Received Packet Kind: "); kprint_hex(uint64(pkt.kind)); kprintln("")
|
||||||
case CmdType(pkt.kind):
|
case CmdType(pkt.kind):
|
||||||
of CMD_SYS_EXIT:
|
of CMD_SYS_EXIT:
|
||||||
kprintln("[ION] Restarting Subject...")
|
kprintln("[ION] Restarting Subject...")
|
||||||
|
|
@ -300,21 +474,31 @@ proc ion_fiber_entry() {.cdecl.} =
|
||||||
kprintln("[ION] Failed to allocate PTY for child!")
|
kprintln("[ION] Failed to allocate PTY for child!")
|
||||||
|
|
||||||
# Re-initialize fiber_child with the requested binary
|
# Re-initialize fiber_child with the requested binary
|
||||||
|
# Note: stack_child is used for KERNEL context switching, not user stack.
|
||||||
init_fiber(addr fiber_child, subject_fiber_entry, addr stack_child[0], sizeof(stack_child))
|
init_fiber(addr fiber_child, subject_fiber_entry, addr stack_child[0], sizeof(stack_child))
|
||||||
|
|
||||||
# Phase 40: Set PTY & Stack
|
|
||||||
fiber_child.pty_id = pid
|
|
||||||
fiber_child.user_sp_init = setup_mksh_stack(addr stack_child[0], sizeof(stack_child))
|
|
||||||
|
|
||||||
# 🏛️ CELLULAR ALLOCATION (SPEC-202 Rev 2)
|
# 🏛️ CELLULAR ALLOCATION (SPEC-202 Rev 2)
|
||||||
# Sentinel (Init) takes 0x88000000 - 0x8C000000 (64MB)
|
# Sentinel (Init) takes Cell 0, Mksh (First Child) takes Cell 1
|
||||||
# Mksh (First Child) starts in the 'Wild' at 0x8C000000
|
let cell_base = CELL1_BASE
|
||||||
let cell_base = 0x8C000000'u64
|
let user_base = USER_VA_BASE
|
||||||
|
let cell_size = 64 * 1024 * 1024'u64
|
||||||
|
|
||||||
|
# Phase 40: Set PTY & User Stack
|
||||||
|
fiber_child.pty_id = pid
|
||||||
fiber_child.phys_offset = cell_base
|
fiber_child.phys_offset = cell_base
|
||||||
|
|
||||||
# Allocate 64MB Slot for Mksh (Needs >32MB for BSS)
|
# Setup User Stack in CELLULAR Memory (User Top)
|
||||||
let cell_size = 64 * 1024 * 1024'u64
|
# We write to Physical Address (cell_base + size), but Mksh sees (user_base + size)
|
||||||
fiber_child.satp_value = mm_create_worker_map(cast[uint64](addr stack_child[0]), uint64(sizeof(stack_child)), SYSTABLE_BASE, cell_base, cell_size)
|
fiber_child.user_sp_init = setup_cellular_stack(cell_base, cell_size, user_base)
|
||||||
|
|
||||||
|
# Create Map avoiding Kernel Stack exposure
|
||||||
|
# We pass 0 as stack_base to skip mapping stack_child into user space.
|
||||||
|
fiber_child.satp_value = mm_create_worker_map(0, 0, SYSTABLE_BASE, cell_base, cell_size)
|
||||||
|
|
||||||
|
# M4.4: Child capabilities are applied in subject_fiber_entry via BKDL manifest.
|
||||||
|
# No hardcoded grants needed here — manifest drives CSpace + pledge.
|
||||||
|
# M4.5: Set budget based on child's Spectrum tier
|
||||||
|
fiber_child.budget_ns = default_budget_for_spectrum((addr fiber_child).getSpectrum())
|
||||||
kprintln("[ION] Child fiber spawned successfully")
|
kprintln("[ION] Child fiber spawned successfully")
|
||||||
else: discard
|
else: discard
|
||||||
else:
|
else:
|
||||||
|
|
@ -326,8 +510,12 @@ proc rumpk_yield_internal*() {.exportc, cdecl.} =
|
||||||
switch(active_fibers_arr[6])
|
switch(active_fibers_arr[6])
|
||||||
|
|
||||||
proc fiber_yield*() {.exportc, cdecl.} =
|
proc fiber_yield*() {.exportc, cdecl.} =
|
||||||
current_fiber.wants_yield = true
|
# Return to the dispatcher context (main_fiber)
|
||||||
rumpk_yield_internal()
|
# kprint("[Y"); kprint_hex(current_fiber.id); kprint("]")
|
||||||
|
switch(addr main_fiber)
|
||||||
|
# The `ld_internal()` part from the instruction was syntactically incorrect
|
||||||
|
# and likely a typo or incomplete instruction.
|
||||||
|
# Assuming the intent was to replace the previous yield mechanism with a direct switch.
|
||||||
|
|
||||||
proc fiber_netswitch_entry() {.cdecl.} =
|
proc fiber_netswitch_entry() {.cdecl.} =
|
||||||
kprintln("[NetSwitch] Traffic Engine Online")
|
kprintln("[NetSwitch] Traffic Engine Online")
|
||||||
|
|
@ -343,6 +531,10 @@ proc fiber_netswitch_entry() {.cdecl.} =
|
||||||
|
|
||||||
kprintln("[NetSwitch] Channels verified. Sovereignty confirmed.")
|
kprintln("[NetSwitch] Channels verified. Sovereignty confirmed.")
|
||||||
|
|
||||||
|
# Initialize LwIP Membrane (DHCP, Netif, DNS)
|
||||||
|
membrane_init()
|
||||||
|
kprintln("[NetSwitch] Membrane initialized — DHCP running")
|
||||||
|
|
||||||
while true:
|
while true:
|
||||||
var pkt: IonPacket
|
var pkt: IonPacket
|
||||||
|
|
||||||
|
|
@ -370,6 +562,9 @@ proc fiber_netswitch_entry() {.cdecl.} =
|
||||||
var res = ion_tx_push(pkt)
|
var res = ion_tx_push(pkt)
|
||||||
if not res: kprintln("[NetSwitch] Drop (TX Full)")
|
if not res: kprintln("[NetSwitch] Drop (TX Full)")
|
||||||
|
|
||||||
|
# Drive LwIP timers + RX ingestion (DHCP, ARP, TCP, ICMP)
|
||||||
|
pump_membrane_stack()
|
||||||
|
|
||||||
# Poll Network
|
# Poll Network
|
||||||
virtio_net_poll()
|
virtio_net_poll()
|
||||||
|
|
||||||
|
|
@ -378,7 +573,6 @@ proc fiber_netswitch_entry() {.cdecl.} =
|
||||||
|
|
||||||
# Prevent Starvation
|
# Prevent Starvation
|
||||||
fiber_sleep(10) # 10ms - allow DHCP state machine to execute
|
fiber_sleep(10) # 10ms - allow DHCP state machine to execute
|
||||||
# 10ms - allow DHCP state machine to execute
|
|
||||||
|
|
||||||
proc ion_ingress*(id: uint16, len: uint16, offset: uint16) {.exportc, cdecl.} =
|
proc ion_ingress*(id: uint16, len: uint16, offset: uint16) {.exportc, cdecl.} =
|
||||||
## Handle packet from Network Driver
|
## Handle packet from Network Driver
|
||||||
|
|
@ -397,15 +591,35 @@ proc ion_ingress*(id: uint16, len: uint16, offset: uint16) {.exportc, cdecl.} =
|
||||||
if not chan_netswitch_rx.send(pkt):
|
if not chan_netswitch_rx.send(pkt):
|
||||||
ion_free_raw(id)
|
ion_free_raw(id)
|
||||||
|
|
||||||
|
|
||||||
|
# --- SCHEDULER STATE ---
|
||||||
|
# --- SCHEDULER STATE ---
|
||||||
|
|
||||||
proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} =
|
proc ion_push_stdin*(p: pointer, len: csize_t) {.exportc, cdecl.} =
|
||||||
if chan_input.ring == nil: return
|
if chan_input.ring == nil: return
|
||||||
|
|
||||||
var pkt = ion_alloc()
|
var pkt = ion_alloc()
|
||||||
if pkt.data == nil: return
|
if pkt.data == nil:
|
||||||
let to_copy = if int(len) < 2048: int(len) else: 2048
|
# kprintln("[ION Push] CRITICAL: Slab allocation failed!")
|
||||||
copyMem(pkt.data, p, to_copy)
|
return
|
||||||
pkt.len = uint16(to_copy)
|
|
||||||
if fiber_subject.sleep_until == 0xFFFFFFFFFFFFFFFF'u64: fiber_subject.sleep_until = 0
|
pkt.data[0] = cast[ptr byte](p)[]
|
||||||
discard chan_input.send(pkt)
|
pkt.len = 1
|
||||||
|
|
||||||
|
var wake_count = 0
|
||||||
|
if chan_input.send(pkt):
|
||||||
|
# Wake up any fibers waiting for terminal input
|
||||||
|
for i in 0..<16:
|
||||||
|
let f = active_fibers_arr[i]
|
||||||
|
if f != nil and f.is_blocked and (f.blocked_on_mask and 0x1000) != 0:
|
||||||
|
f.is_blocked = false
|
||||||
|
f.blocked_on_mask = 0
|
||||||
|
f.sleep_until = 0 # Wake immediately
|
||||||
|
wake_count += 1
|
||||||
|
|
||||||
|
if wake_count > 0:
|
||||||
|
# kprint("[ION] Woke "); kprint_hex(uint64(wake_count)); kprintln(" fibers")
|
||||||
|
discard
|
||||||
|
|
||||||
proc k_check_deferred_yield*() {.exportc, cdecl.} =
|
proc k_check_deferred_yield*() {.exportc, cdecl.} =
|
||||||
if current_fiber != nil and current_fiber.wants_yield:
|
if current_fiber != nil and current_fiber.wants_yield:
|
||||||
|
|
@ -449,8 +663,14 @@ proc k_handle_exception*(scause, sepc, stval: uint) {.exportc, cdecl.} =
|
||||||
|
|
||||||
kprintln("")
|
kprintln("")
|
||||||
kprintln("[IMMUNE] System HALTING (Trap Loop Prevention).")
|
kprintln("[IMMUNE] System HALTING (Trap Loop Prevention).")
|
||||||
|
when defined(riscv64):
|
||||||
while true:
|
while true:
|
||||||
{.emit: "asm volatile(\"wfi\");".}
|
{.emit: "asm volatile(\"wfi\");".}
|
||||||
|
elif defined(arm64):
|
||||||
|
while true:
|
||||||
|
{.emit: "asm volatile(\"wfe\");".}
|
||||||
|
else:
|
||||||
|
while true: discard
|
||||||
|
|
||||||
proc k_get_current_satp*(): uint64 {.exportc, cdecl.} =
|
proc k_get_current_satp*(): uint64 {.exportc, cdecl.} =
|
||||||
if current_fiber != nil:
|
if current_fiber != nil:
|
||||||
|
|
@ -460,9 +680,40 @@ proc k_get_current_satp*(): uint64 {.exportc, cdecl.} =
|
||||||
proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} =
|
proc wrapper_vfs_write(fd: int32, buf: pointer, count: uint64): int64 {.cdecl.} =
|
||||||
return ion_vfs_write(fd, buf, count)
|
return ion_vfs_write(fd, buf, count)
|
||||||
|
|
||||||
|
# --- M4: PLEDGE ENFORCEMENT ---
|
||||||
|
|
||||||
|
proc check_pledge(nr: uint, f: Fiber): bool =
|
||||||
|
## Returns true if syscall is allowed by fiber's pledge mask
|
||||||
|
let pledges = f.promises and 0x3FFFFFFFFFFFFFFF'u64
|
||||||
|
if pledges == PLEDGE_ALL: return true # Unrestricted
|
||||||
|
|
||||||
|
case nr:
|
||||||
|
of 0x01, 0x65, 0x66, 0x100, 0x101, 0x102:
|
||||||
|
# exit, nanosleep, get_time, yield, pledge, wait_multi — always allowed
|
||||||
|
return true
|
||||||
|
of 0x203, 0x204: # READ, WRITE
|
||||||
|
return (pledges and PLEDGE_STDIO) != 0
|
||||||
|
of 0x200, 0x202: # OPEN, LIST
|
||||||
|
return (pledges and PLEDGE_RPATH) != 0
|
||||||
|
of 0x201, 0x205, 0x206, 0x207: # CLOSE, IOCTL, FCNTL, DUP2
|
||||||
|
return (pledges and PLEDGE_STDIO) != 0
|
||||||
|
of 0x600, 0x300: # EXECV, SPAWN_FIBER
|
||||||
|
return (pledges and PLEDGE_EXEC) != 0
|
||||||
|
of 0x905: # SYS_SOCK_RESOLVE
|
||||||
|
return (pledges and PLEDGE_INET) != 0
|
||||||
|
else:
|
||||||
|
return true # Unknown syscalls pass through
|
||||||
|
|
||||||
# --- SYSCALL HANDLER ---
|
# --- SYSCALL HANDLER ---
|
||||||
|
|
||||||
proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
|
proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
|
||||||
|
# M4: Pledge enforcement gate
|
||||||
|
if current_fiber != nil and not check_pledge(nr, current_fiber):
|
||||||
|
kprint("[DENIED] Fiber "); kprint_hex(current_fiber.id)
|
||||||
|
kprint(" pledge violation: syscall "); kprint_hex(uint64(nr)); kprintln("")
|
||||||
|
discard emit_access_denied(current_fiber.id, uint64(nr), 0, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u # -1 EPERM
|
||||||
|
|
||||||
if nr != 0x100 and nr != 0x205 and nr != 0x204 and nr != 0x203:
|
if nr != 0x100 and nr != 0x205 and nr != 0x204 and nr != 0x203:
|
||||||
kprint("[Syscall] NR: "); kprint_hex(uint64(nr)); kprintln("")
|
kprint("[Syscall] NR: "); kprint_hex(uint64(nr)); kprintln("")
|
||||||
|
|
||||||
|
|
@ -484,60 +735,113 @@ proc k_handle_syscall*(nr, a0, a1, a2: uint): uint {.exportc, cdecl.} =
|
||||||
of 0x100: # YIELD
|
of 0x100: # YIELD
|
||||||
fiber_yield()
|
fiber_yield()
|
||||||
return 0
|
return 0
|
||||||
|
of 0x101: # SYS_PLEDGE (OpenBSD semantics: can only narrow, never widen)
|
||||||
|
let current = current_fiber.promises and 0x3FFFFFFFFFFFFFFF'u64
|
||||||
|
let requested = a0 and 0x3FFFFFFFFFFFFFFF'u64
|
||||||
|
if (requested and (not current)) != 0:
|
||||||
|
kprint("[DENIED] Fiber "); kprint_hex(current_fiber.id); kprintln(" pledge widen attempt")
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x101, 0, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u # -1 EPERM
|
||||||
|
current_fiber.promises = (current_fiber.promises and 0xC000000000000000'u64) or requested
|
||||||
|
return 0
|
||||||
of 0x102: # SYS_WAIT_MULTI (Silence Doctrine)
|
of 0x102: # SYS_WAIT_MULTI (Silence Doctrine)
|
||||||
current_fiber.blocked_on_mask = a0
|
current_fiber.blocked_on_mask = a0
|
||||||
current_fiber.is_blocked = true
|
current_fiber.is_blocked = true
|
||||||
fiber_yield()
|
fiber_yield()
|
||||||
return 0
|
return 0
|
||||||
of 0x200: # OPEN
|
of 0x200: # OPEN
|
||||||
# return uint(libc_impl.libc_impl_open(cast[cstring](a0), int(a1)))
|
# M4: Check VFS capability (channel 0x2000)
|
||||||
return 0
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
|
let write_mode = (a1 and 1) != 0 # O_WRONLY or O_RDWR
|
||||||
|
let needed_perm = if write_mode: PERM_WRITE else: PERM_READ
|
||||||
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, needed_perm):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x2000, needed_perm, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
|
let path = cast[cstring](a0)
|
||||||
|
let result = ion_vfs_open(path, int32(a1))
|
||||||
|
kprint("[OPEN] path="); kprint(path); kprint(" result="); kprint_hex(uint64(result)); kprint(" returning...\n")
|
||||||
|
let ret_val = uint(result)
|
||||||
|
kprint("[OPEN] About to return value: "); kprint_hex(ret_val); kprint("\n")
|
||||||
|
return ret_val
|
||||||
of 0x201: # CLOSE
|
of 0x201: # CLOSE
|
||||||
# return uint(libc_impl.libc_impl_close(int(a0)))
|
kprint("[CLOSE] fd="); kprint_hex(a0); kprint("\n")
|
||||||
return 0
|
return uint(ion_vfs_close(int32(a0)))
|
||||||
of 0x202: # LIST
|
of 0x202: # LIST
|
||||||
|
# M4: Check VFS read capability (channel 0x2000)
|
||||||
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_READ):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_READ, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
return uint(ion_vfs_list(cast[pointer](a0), uint64(a1)))
|
return uint(ion_vfs_list(cast[pointer](a0), uint64(a1)))
|
||||||
|
of 0x205: # IOCTL
|
||||||
|
kprint("[IOCTL] fd="); kprint_hex(a0); kprint(" request="); kprint_hex(a1); kprint("\n")
|
||||||
|
return 0 # stub
|
||||||
|
of 0x206: # FCNTL
|
||||||
|
kprint("[FCNTL] fd="); kprint_hex(a0); kprint(" cmd="); kprint_hex(a1); kprint("\n")
|
||||||
|
if a1 == 0: # F_DUPFD
|
||||||
|
return uint(ion_vfs_dup(int32(a0), int32(a2)))
|
||||||
|
return 0
|
||||||
|
of 0x207: # DUP2
|
||||||
|
return uint(ion_vfs_dup2(int32(a0), int32(a1)))
|
||||||
of 0x905: # SYS_SOCK_RESOLVE
|
of 0x905: # SYS_SOCK_RESOLVE
|
||||||
# TODO: Implement getaddrinfo kernel integration
|
# TODO: Implement getaddrinfo kernel integration
|
||||||
return 0 # Not implemented yet
|
return 0 # Not implemented yet
|
||||||
of 0x203: # READ
|
of 0x203: # READ
|
||||||
# kprint("[Syscall] READ(fd="); kprint_hex(a0); kprint(")\n")
|
# M4: Check console.input capability for stdin (fd 0)
|
||||||
var vres = -2
|
if a0 == 0 and current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
|
if not cspace_check_channel(current_fiber.cspace_id, 0x1000, PERM_READ):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x1000, PERM_READ, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
|
# M4: Check VFS capability for file reads (fd >= 3)
|
||||||
|
if a0 >= 3 and current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_READ):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_READ, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
|
var vres: int64 = -2
|
||||||
|
if a0 >= 3:
|
||||||
|
vres = ion_vfs_read(int32(a0), cast[pointer](a1), uint64(a2))
|
||||||
|
|
||||||
|
# Fallback to PTY if FD=0 or VFS returned TTY mode (-2)
|
||||||
if a0 == 0 or vres == -2:
|
if a0 == 0 or vres == -2:
|
||||||
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
||||||
while true:
|
while true:
|
||||||
if pty_has_data_for_slave(pid):
|
if pty_has_data_for_slave(pid):
|
||||||
var buf: array[1, byte]
|
var buf: array[1, byte]
|
||||||
let n = pty_read_slave(PTY_SLAVE_BASE + pid, addr buf[0], 1)
|
let n = pty_read_slave(int(PTY_SLAVE_BASE + pid), addr buf[0], 1)
|
||||||
if n > 0:
|
if n > 0:
|
||||||
# kprint("[Kernel] READ delivered PTY byte: "); kprint_hex8(buf[0]); kprint("\n")
|
|
||||||
cast[ptr UncheckedArray[byte]](a1)[0] = buf[0]
|
cast[ptr UncheckedArray[byte]](a1)[0] = buf[0]
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
var pkt: IonPacket
|
var pkt: IonPacket
|
||||||
if chan_input.recv(pkt):
|
if chan_input.recv(pkt):
|
||||||
kprint("[Kernel] Got Input Packet of len: "); kprint_hex(uint64(pkt.len)); kprint("\n")
|
for i in 0..<int(pkt.len):
|
||||||
let n = if uint64(pkt.len) < a2: uint64(pkt.len) else: a2
|
pty_push_input(pid, char(pkt.data[i]))
|
||||||
if n > 0:
|
ion_free(pkt)
|
||||||
let data = cast[ptr UncheckedArray[byte]](pkt.data)
|
|
||||||
for i in 0 ..< int(n):
|
|
||||||
kprint(" Input Char: "); kprint(cast[cstring](unsafeAddr data[i])); kprint("\n")
|
|
||||||
pty_push_input(pid, char(data[i]))
|
|
||||||
ion_free_raw(pkt.id)
|
|
||||||
# Loop again to read from PTY
|
|
||||||
else:
|
else:
|
||||||
current_fiber.sleep_until = 0xFFFFFFFFFFFFFFFF'u64
|
current_fiber.is_blocked = true
|
||||||
|
current_fiber.blocked_on_mask = 0x1000 # Terminal Input
|
||||||
|
current_fiber.sleep_until = 0xFFFFFFFFFFFFFFFF'u64 # Infinite
|
||||||
fiber_yield()
|
fiber_yield()
|
||||||
return uint(vres)
|
return uint(vres)
|
||||||
of 0x204: # WRITE
|
of 0x204: # WRITE
|
||||||
if a0 == 1 or a0 == 2:
|
if a0 == 1 or a0 == 2:
|
||||||
|
# M4: Check console.output capability (channel 0x1001)
|
||||||
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
|
if not cspace_check_channel(current_fiber.cspace_id, 0x1001, PERM_WRITE):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x1001, PERM_WRITE, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
console_write(cast[pointer](a1), csize_t(a2))
|
console_write(cast[pointer](a1), csize_t(a2))
|
||||||
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
let pid = if current_fiber.pty_id >= 0: current_fiber.pty_id else: 0
|
||||||
discard pty_write_slave(PTY_SLAVE_BASE + pid, cast[ptr byte](a1), int(a2))
|
discard pty_write_slave(PTY_SLAVE_BASE + pid, cast[ptr byte](a1), int(a2))
|
||||||
return a2
|
return a2
|
||||||
# var vres = libc_impl.libc_impl_write(int(a0), cast[pointer](a1), uint64(a2))
|
elif a0 >= 3:
|
||||||
var vres = -1
|
# M4: Check VFS write capability (channel 0x2000)
|
||||||
return uint(vres)
|
if current_fiber != nil and current_fiber.cspace_id < 16:
|
||||||
of 0x205: return 0 # IOCTL stub
|
if not cspace_check_channel(current_fiber.cspace_id, 0x2000, PERM_WRITE):
|
||||||
|
discard emit_access_denied(current_fiber.id, 0x2000, PERM_WRITE, 0)
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u
|
||||||
|
return uint(ion_vfs_write(int32(a0), cast[pointer](a1), uint64(a2)))
|
||||||
|
return 0xFFFFFFFFFFFFFFFF'u # -1
|
||||||
of 0x600: # EXECV (Legacy - use SYS_SPAWN_FIBER instead)
|
of 0x600: # EXECV (Legacy - use SYS_SPAWN_FIBER instead)
|
||||||
# Manual copy path to subject_loading_path
|
# Manual copy path to subject_loading_path
|
||||||
let p = cast[ptr UncheckedArray[char]](a0)
|
let p = cast[ptr UncheckedArray[char]](a0)
|
||||||
|
|
@ -585,8 +889,6 @@ proc ion_wait_multi*(mask: uint64): int32 {.exportc, cdecl.} =
|
||||||
|
|
||||||
proc kmain() {.exportc, cdecl.} =
|
proc kmain() {.exportc, cdecl.} =
|
||||||
var next_mmio_addr {.importc: "virtio_pci_next_mmio_addr", nodecl.}: uint32
|
var next_mmio_addr {.importc: "virtio_pci_next_mmio_addr", nodecl.}: uint32
|
||||||
kprint("\n[Kernel] next_mmio_addr check: ")
|
|
||||||
kprint_hex(uint64(next_mmio_addr))
|
|
||||||
kprintln("\nNexus Sovereign Core v1.1.2 Starting...")
|
kprintln("\nNexus Sovereign Core v1.1.2 Starting...")
|
||||||
|
|
||||||
# HAL Hardware Inits
|
# HAL Hardware Inits
|
||||||
|
|
@ -636,6 +938,8 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
sys.fn_vfs_read = ion_vfs_read
|
sys.fn_vfs_read = ion_vfs_read
|
||||||
sys.fn_vfs_list = ion_vfs_list
|
sys.fn_vfs_list = ion_vfs_list
|
||||||
sys.fn_vfs_write = wrapper_vfs_write
|
sys.fn_vfs_write = wrapper_vfs_write
|
||||||
|
sys.fn_vfs_dup = ion_vfs_dup
|
||||||
|
sys.fn_vfs_dup2 = ion_vfs_dup2
|
||||||
sys.fn_wait_multi = ion_wait_multi
|
sys.fn_wait_multi = ion_wait_multi
|
||||||
# Point to user slab allocator (shared memory) instead of kernel pool
|
# Point to user slab allocator (shared memory) instead of kernel pool
|
||||||
sys.fn_ion_alloc = ion_user_alloc_systable
|
sys.fn_ion_alloc = ion_user_alloc_systable
|
||||||
|
|
@ -669,11 +973,16 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
chan_net_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xC000)
|
chan_net_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xC000)
|
||||||
chan_net_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xE000)
|
chan_net_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0xE000)
|
||||||
|
|
||||||
|
# Project LibWeb: LWF Rings (after user slab at 0x110000)
|
||||||
|
chan_lwf_rx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x110000)
|
||||||
|
chan_lwf_tx.ring = cast[ptr HAL_Ring[IonPacket]](SYSTABLE_BASE + 0x112000)
|
||||||
|
|
||||||
# Initialize Shared Memory Rings
|
# Initialize Shared Memory Rings
|
||||||
chan_rx.ring.mask = 255; chan_tx.ring.mask = 255
|
chan_rx.ring.mask = 255; chan_tx.ring.mask = 255
|
||||||
ring_event.mask = 255; chan_cmd.ring.mask = 255
|
ring_event.mask = 255; chan_cmd.ring.mask = 255
|
||||||
chan_input.ring.mask = 255
|
chan_input.ring.mask = 255
|
||||||
chan_net_rx.ring.mask = 255; chan_net_tx.ring.mask = 255
|
chan_net_rx.ring.mask = 255; chan_net_tx.ring.mask = 255
|
||||||
|
chan_lwf_rx.ring.mask = 255; chan_lwf_tx.ring.mask = 255
|
||||||
# Force reset pointers to zero
|
# Force reset pointers to zero
|
||||||
chan_rx.ring.head = 0; chan_rx.ring.tail = 0
|
chan_rx.ring.head = 0; chan_rx.ring.tail = 0
|
||||||
chan_tx.ring.head = 0; chan_tx.ring.tail = 0
|
chan_tx.ring.head = 0; chan_tx.ring.tail = 0
|
||||||
|
|
@ -682,6 +991,8 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
chan_input.ring.head = 0; chan_input.ring.tail = 0
|
chan_input.ring.head = 0; chan_input.ring.tail = 0
|
||||||
chan_net_rx.ring.head = 0; chan_net_rx.ring.tail = 0
|
chan_net_rx.ring.head = 0; chan_net_rx.ring.tail = 0
|
||||||
chan_net_tx.ring.head = 0; chan_net_tx.ring.tail = 0
|
chan_net_tx.ring.head = 0; chan_net_tx.ring.tail = 0
|
||||||
|
chan_lwf_rx.ring.head = 0; chan_lwf_rx.ring.tail = 0
|
||||||
|
chan_lwf_tx.ring.head = 0; chan_lwf_tx.ring.tail = 0
|
||||||
|
|
||||||
sys.s_rx = chan_rx.ring; sys.s_tx = chan_tx.ring; sys.s_event = ring_event
|
sys.s_rx = chan_rx.ring; sys.s_tx = chan_tx.ring; sys.s_event = ring_event
|
||||||
sys.s_cmd = chan_cmd.ring; sys.s_input = chan_input.ring
|
sys.s_cmd = chan_cmd.ring; sys.s_input = chan_input.ring
|
||||||
|
|
@ -690,6 +1001,10 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
sys.s_net_rx = chan_net_rx.ring
|
sys.s_net_rx = chan_net_rx.ring
|
||||||
sys.s_net_tx = chan_net_tx.ring
|
sys.s_net_tx = chan_net_tx.ring
|
||||||
|
|
||||||
|
# Project LibWeb: Map LWF Rings
|
||||||
|
sys.s_lwf_rx = chan_lwf_rx.ring
|
||||||
|
sys.s_lwf_tx = chan_lwf_tx.ring
|
||||||
|
|
||||||
sys.magic = 0x4E585553
|
sys.magic = 0x4E585553
|
||||||
sys.fb_addr = fb_kern_get_addr()
|
sys.fb_addr = fb_kern_get_addr()
|
||||||
sys.fb_width = 1920; sys.fb_height = 1080; sys.fb_stride = 1920 * 4; sys.fb_bpp = 32
|
sys.fb_width = 1920; sys.fb_height = 1080; sys.fb_stride = 1920 * 4; sys.fb_bpp = 32
|
||||||
|
|
@ -726,46 +1041,52 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
discard emit_capability_grant(2, 2, 0x1001, 1, shell_spawn_id) # Log event
|
discard emit_capability_grant(2, 2, 0x1001, 1, shell_spawn_id) # Log event
|
||||||
kprintln("[CSpace] Granted console capabilities to NexShell")
|
kprintln("[CSpace] Granted console capabilities to NexShell")
|
||||||
|
|
||||||
# Grant console output to Subject (fiber 4)
|
# M4.4: Subject (fiber 4) capabilities are now manifest-driven.
|
||||||
discard fiber_grant_channel(4, 0x1001, PERM_WRITE) # console.output (write-only)
|
# The BKDL manifest in the ELF binary declares what it needs.
|
||||||
discard emit_capability_grant(4, 2, 0x1001, 0, subject_spawn_id) # Log event
|
# Grants are applied in subject_fiber_entry via kload_manifest_tar + apply_manifest.
|
||||||
kprintln("[CSpace] Granted output capability to Subject")
|
kprintln("[CSpace] Subject capabilities deferred to BKDL manifest")
|
||||||
|
|
||||||
# Grant Network I/O (RX/TX)
|
# Grant Network I/O (RX/TX) — kernel fibers only
|
||||||
# NetSwitch (Fiber 6): Full access to shuttle packets
|
# NetSwitch (Fiber 6): Full access to shuttle packets
|
||||||
discard fiber_grant_channel(6, 0x500, PERM_READ or PERM_WRITE) # CMD_NET_TX
|
discard fiber_grant_channel(6, 0x500, PERM_READ or PERM_WRITE) # CMD_NET_TX
|
||||||
discard fiber_grant_channel(6, 0x501, PERM_READ or PERM_WRITE) # CMD_NET_RX
|
discard fiber_grant_channel(6, 0x501, PERM_READ or PERM_WRITE) # CMD_NET_RX
|
||||||
|
kprintln("[CSpace] Granted network capabilities to NetSwitch")
|
||||||
|
|
||||||
# Subject (Fiber 4): Needs to READ RX (0x501) and WRITE TX (0x500)
|
# M4: Grant VFS capabilities — kernel fibers only
|
||||||
discard fiber_grant_channel(4, 0x500, PERM_WRITE) # Can send packets
|
discard fiber_grant_channel(1, 0x2000, PERM_READ or PERM_WRITE) # ION: VFS (ELF loading)
|
||||||
discard fiber_grant_channel(4, 0x501, PERM_READ) # Can receive packets
|
discard fiber_grant_channel(1, 0x1000, PERM_READ or PERM_WRITE) # ION: console.input
|
||||||
kprintln("[CSpace] Granted network capabilities to NetSwitch and Subject")
|
discard fiber_grant_channel(1, 0x1001, PERM_READ or PERM_WRITE) # ION: console.output
|
||||||
|
discard fiber_grant_channel(2, 0x2000, PERM_READ or PERM_WRITE) # NexShell: VFS
|
||||||
|
kprintln("[CSpace] Granted VFS capabilities to kernel fibers")
|
||||||
|
|
||||||
# Init (Subject) lives in Cell 0 (0x88000000) - Needs 64MB for large BSS
|
# Init (Subject) lives in Cell 0 — Needs 64MB for large BSS
|
||||||
fiber_subject.phys_offset = 0x88000000'u64
|
fiber_subject.phys_offset = CELL0_BASE
|
||||||
let init_size = 64 * 1024 * 1024'u64
|
let init_size = 64 * 1024 * 1024'u64
|
||||||
fiber_subject.satp_value = mm_create_worker_map(cast[uint64](addr stack_subject[0]), uint64(sizeof(stack_subject)), SYSTABLE_BASE, fiber_subject.phys_offset, init_size)
|
fiber_subject.satp_value = mm_create_worker_map(cast[uint64](addr stack_subject[0]), uint64(sizeof(stack_subject)), SYSTABLE_BASE, fiber_subject.phys_offset, init_size)
|
||||||
|
|
||||||
# Interrupt Setup
|
# Interrupt Setup (Architecture-specific)
|
||||||
|
when defined(riscv64):
|
||||||
asm "csrsi sstatus, 2"
|
asm "csrsi sstatus, 2"
|
||||||
{.emit: "asm volatile(\"csrs sie, %0\" : : \"r\"(1L << 9));".}
|
{.emit: "asm volatile(\"csrs sie, %0\" : : \"r\"(1L << 9));".}
|
||||||
let plic_base = 0x0c000000'u64
|
let plic_base = 0x0c000000'u64
|
||||||
# Priority (each IRQ has a 4-byte priority register)
|
# Priority (each IRQ has a 4-byte priority register)
|
||||||
cast[ptr uint32](plic_base + 40)[] = 1 # UART (IRQ 10: 10*4 = 40)
|
cast[ptr uint32](plic_base + 40)[] = 1 # UART (IRQ 10: 10*4 = 40)
|
||||||
# cast[ptr uint32](plic_base + 128)[] = 1 # VirtIO-Net (IRQ 32: 32*4 = 128)
|
|
||||||
# cast[ptr uint32](plic_base + 132)[] = 1 # VirtIO-Net (IRQ 33: 33*4 = 132)
|
|
||||||
# cast[ptr uint32](plic_base + 136)[] = 1 # VirtIO-Net (IRQ 34: 34*4 = 136)
|
|
||||||
# cast[ptr uint32](plic_base + 140)[] = 1 # VirtIO-Net (IRQ 35: 35*4 = 140)
|
|
||||||
|
|
||||||
# Enable (Supervisor Context 1)
|
# Enable (Supervisor Context 1)
|
||||||
# IRQs 0-31 (Enable IRQ 10 = UART)
|
# IRQs 0-31 (Enable IRQ 10 = UART)
|
||||||
cast[ptr uint32](plic_base + 0x2000 + 0x80)[] = (1'u32 shl 10)
|
cast[ptr uint32](plic_base + 0x2000 + 0x80)[] = (1'u32 shl 10)
|
||||||
# IRQs 32-63
|
|
||||||
# cast[ptr uint32](plic_base + 0x2000 + 0x80 + 4)[] = 0x0000000F # Enable 32,33,34,35
|
|
||||||
|
|
||||||
# Threshold
|
# Threshold
|
||||||
cast[ptr uint32](plic_base + 0x201000)[] = 0
|
cast[ptr uint32](plic_base + 0x201000)[] = 0
|
||||||
|
|
||||||
|
let en_addr = plic_base + 0x2000 + 0x80
|
||||||
|
let en_val = cast[ptr uint32](en_addr)[]
|
||||||
|
kprint("[PLIC] UART Enable Register at "); kprint_hex(en_addr)
|
||||||
|
kprint(" is "); kprint_hex(uint64(en_val)); kprintln("")
|
||||||
|
elif defined(arm64):
|
||||||
|
# GICv2 is initialized in aarch64_init() before Nim entry
|
||||||
|
kprintln("[GIC] Interrupts configured by HAL")
|
||||||
|
|
||||||
active_fibers_arr[0] = addr fiber_ion; active_fibers_arr[1] = addr fiber_nexshell
|
active_fibers_arr[0] = addr fiber_ion; active_fibers_arr[1] = addr fiber_nexshell
|
||||||
active_fibers_arr[2] = addr fiber_compositor; active_fibers_arr[3] = addr fiber_netswitch
|
active_fibers_arr[2] = addr fiber_compositor; active_fibers_arr[3] = addr fiber_netswitch
|
||||||
active_fibers_arr[4] = addr fiber_subject
|
active_fibers_arr[4] = addr fiber_subject
|
||||||
|
|
@ -777,28 +1098,42 @@ proc kmain() {.exportc, cdecl.} =
|
||||||
(addr fiber_compositor).setSpectrum(Spectrum.Photon)
|
(addr fiber_compositor).setSpectrum(Spectrum.Photon)
|
||||||
(addr fiber_netswitch).setSpectrum(Spectrum.Photon)
|
(addr fiber_netswitch).setSpectrum(Spectrum.Photon)
|
||||||
(addr fiber_nexshell).setSpectrum(Spectrum.Matter) # Interactive
|
(addr fiber_nexshell).setSpectrum(Spectrum.Matter) # Interactive
|
||||||
(addr fiber_subject).setSpectrum(Spectrum.Void) # Untrusted Background
|
(addr fiber_subject).setSpectrum(Spectrum.Matter) # Elevated from Void
|
||||||
(addr fiber_child).setSpectrum(Spectrum.Void) # Child process (spawned)
|
(addr fiber_child).setSpectrum(Spectrum.Matter) # Elevated from Void
|
||||||
current_fiber.setSpectrum(Spectrum.Void) # Main loop (dispatcher)
|
current_fiber.setSpectrum(Spectrum.Void) # Main loop (dispatcher)
|
||||||
|
|
||||||
|
# M4.5: Kinetic Economy — default budgets per Spectrum tier
|
||||||
|
(addr fiber_ion).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
||||||
|
(addr fiber_compositor).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
||||||
|
(addr fiber_netswitch).budget_ns = default_budget_for_spectrum(Spectrum.Photon)
|
||||||
|
(addr fiber_nexshell).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
||||||
|
(addr fiber_subject).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
||||||
|
(addr fiber_child).budget_ns = default_budget_for_spectrum(Spectrum.Matter)
|
||||||
|
# Void (main loop): budget_ns = 0 → unlimited (already default)
|
||||||
|
|
||||||
|
# M4: Set initial pledge masks (using top-level set_pledge)
|
||||||
|
fiber_ion.set_pledge(PLEDGE_ALL)
|
||||||
|
fiber_compositor.set_pledge(PLEDGE_ALL)
|
||||||
|
fiber_netswitch.set_pledge(PLEDGE_ALL)
|
||||||
|
fiber_nexshell.set_pledge(PLEDGE_STDIO or PLEDGE_RPATH or PLEDGE_WPATH or PLEDGE_EXEC)
|
||||||
|
# M4.4: Subject/child pledge is set by BKDL manifest in subject_fiber_entry.
|
||||||
|
# Start with PLEDGE_STDIO as safe default (manifest will override).
|
||||||
|
fiber_subject.set_pledge(PLEDGE_STDIO)
|
||||||
|
fiber_child.set_pledge(PLEDGE_STDIO)
|
||||||
|
kprintln("[M4] Pledge masks applied (Subject/child: manifest-driven)")
|
||||||
|
|
||||||
# Ground Zero Phase 2: Introspection
|
# Ground Zero Phase 2: Introspection
|
||||||
stl_print_summary()
|
stl_print_summary()
|
||||||
|
|
||||||
kprintln("[Rumpk] Multi-Fiber Dispatcher starting...")
|
kprintln("[Rumpk] Multi-Fiber Dispatcher starting...")
|
||||||
switch(addr fiber_ion)
|
switch(addr fiber_ion)
|
||||||
|
# Exported from Zig
|
||||||
|
proc uart_poll_input() {.importc, cdecl.}
|
||||||
|
|
||||||
while true:
|
while true:
|
||||||
if not sched_tick_spectrum(active_fibers_arr.toOpenArray(0, 5)):
|
# ⌨️ Hardware Input Driver (Polling fallback)
|
||||||
# The Silence Doctrine: Wait for Interrupt
|
uart_poll_input()
|
||||||
let next_wake = sched_get_next_wakeup(active_fibers_arr.toOpenArray(0, 5))
|
|
||||||
let now = sched_get_now_ns()
|
|
||||||
|
|
||||||
if next_wake > now and next_wake != 0xFFFFFFFFFFFFFFFF'u64:
|
if not sched_tick_spectrum(active_fibers_arr):
|
||||||
proc rumpk_timer_set_ns(ns: uint64) {.importc, cdecl.}
|
# Wait for data or timeout
|
||||||
# kprint("Interval: "); kprint_hex(next_wake - now); kprintln("")
|
fiber_sleep(1)
|
||||||
rumpk_timer_set_ns(next_wake - now) # Pass interval
|
|
||||||
else:
|
|
||||||
# No timer needed (or overdue), just WFI for other interrupts (IO)
|
|
||||||
discard
|
|
||||||
|
|
||||||
asm "csrsi sstatus, 2"
|
|
||||||
asm "wfi"
|
|
||||||
|
|
|
||||||
|
|
@ -67,6 +67,76 @@ proc kload*(path: string): uint64 =
|
||||||
|
|
||||||
return ehdr.e_entry
|
return ehdr.e_entry
|
||||||
|
|
||||||
|
# --- M4.4: BKDL Manifest Extraction ---
|
||||||
|
|
||||||
|
proc streq_n(a: ptr UncheckedArray[byte], b: cstring, maxlen: int): bool =
|
||||||
|
## Compare byte array against C string, bounded by maxlen
|
||||||
|
var i = 0
|
||||||
|
while i < maxlen:
|
||||||
|
if b[i] == '\0':
|
||||||
|
return true # b ended, all matched
|
||||||
|
if a[i] != byte(b[i]):
|
||||||
|
return false
|
||||||
|
i += 1
|
||||||
|
return false
|
||||||
|
|
||||||
|
proc kload_manifest*(file_content: openArray[byte]): ManifestResult =
|
||||||
|
## Scan ELF section headers for .nexus.manifest containing BKDL data.
|
||||||
|
## Returns header=nil if no manifest found.
|
||||||
|
result.header = nil
|
||||||
|
result.caps = nil
|
||||||
|
result.count = 0
|
||||||
|
|
||||||
|
if file_content.len < int(sizeof(Elf64_Ehdr)):
|
||||||
|
return
|
||||||
|
|
||||||
|
let ehdr = cast[ptr Elf64_Ehdr](unsafeAddr file_content[0])
|
||||||
|
let base = cast[uint64](unsafeAddr file_content[0])
|
||||||
|
let file_len = uint64(file_content.len)
|
||||||
|
|
||||||
|
# Validate section header table is within file
|
||||||
|
if ehdr.e_shoff == 0 or ehdr.e_shnum == 0:
|
||||||
|
return
|
||||||
|
if ehdr.e_shoff + uint64(ehdr.e_shnum) * uint64(ehdr.e_shentsize) > file_len:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Get string table section (shstrtab)
|
||||||
|
if ehdr.e_shstrndx >= ehdr.e_shnum:
|
||||||
|
return
|
||||||
|
let strtab_shdr = cast[ptr Elf64_Shdr](base + ehdr.e_shoff + uint64(ehdr.e_shstrndx) * uint64(ehdr.e_shentsize))
|
||||||
|
if strtab_shdr.sh_offset + strtab_shdr.sh_size > file_len:
|
||||||
|
return
|
||||||
|
let strtab = cast[ptr UncheckedArray[byte]](base + strtab_shdr.sh_offset)
|
||||||
|
|
||||||
|
# Scan sections for .nexus.manifest
|
||||||
|
let target = cstring(".nexus.manifest")
|
||||||
|
for i in 0 ..< int(ehdr.e_shnum):
|
||||||
|
let shdr = cast[ptr Elf64_Shdr](base + ehdr.e_shoff + uint64(i) * uint64(ehdr.e_shentsize))
|
||||||
|
if shdr.sh_name < uint32(strtab_shdr.sh_size):
|
||||||
|
let name_ptr = cast[ptr UncheckedArray[byte]](cast[uint64](strtab) + uint64(shdr.sh_name))
|
||||||
|
let remaining = int(strtab_shdr.sh_size) - int(shdr.sh_name)
|
||||||
|
if streq_n(name_ptr, target, remaining):
|
||||||
|
# Found .nexus.manifest section
|
||||||
|
if shdr.sh_offset + shdr.sh_size > file_len:
|
||||||
|
return # Section data out of bounds
|
||||||
|
if shdr.sh_size < uint64(sizeof(BkdlHeader)):
|
||||||
|
return # Too small
|
||||||
|
|
||||||
|
let hdr = cast[ptr BkdlHeader](base + shdr.sh_offset)
|
||||||
|
if hdr.magic != BKDL_MAGIC or hdr.version != BKDL_VERSION:
|
||||||
|
kprintln("[Manifest] Invalid BKDL magic/version")
|
||||||
|
return
|
||||||
|
|
||||||
|
let expected_size = uint64(sizeof(BkdlHeader)) + uint64(hdr.cap_count) * uint64(sizeof(CapDescriptor))
|
||||||
|
if expected_size > shdr.sh_size:
|
||||||
|
kprintln("[Manifest] BKDL cap_count exceeds section size")
|
||||||
|
return
|
||||||
|
|
||||||
|
result.header = hdr
|
||||||
|
result.caps = cast[ptr UncheckedArray[CapDescriptor]](base + shdr.sh_offset + uint64(sizeof(BkdlHeader)))
|
||||||
|
result.count = int(hdr.cap_count)
|
||||||
|
return
|
||||||
|
|
||||||
proc kexec*(path: string) =
|
proc kexec*(path: string) =
|
||||||
let entry = kload(path)
|
let entry = kload(path)
|
||||||
if entry != 0:
|
if entry != 0:
|
||||||
|
|
|
||||||
|
|
@ -37,8 +37,48 @@ type
|
||||||
p_memsz*: uint64
|
p_memsz*: uint64
|
||||||
p_align*: uint64
|
p_align*: uint64
|
||||||
|
|
||||||
|
Elf64_Shdr* {.packed.} = object
|
||||||
|
sh_name*: uint32
|
||||||
|
sh_type*: uint32
|
||||||
|
sh_flags*: uint64
|
||||||
|
sh_addr*: uint64
|
||||||
|
sh_offset*: uint64
|
||||||
|
sh_size*: uint64
|
||||||
|
sh_link*: uint32
|
||||||
|
sh_info*: uint32
|
||||||
|
sh_addralign*: uint64
|
||||||
|
sh_entsize*: uint64
|
||||||
|
|
||||||
const
|
const
|
||||||
PT_LOAD* = 1
|
PT_LOAD* = 1
|
||||||
|
PT_NOTE* = 4
|
||||||
PF_X* = 1
|
PF_X* = 1
|
||||||
PF_W* = 2
|
PF_W* = 2
|
||||||
PF_R* = 4
|
PF_R* = 4
|
||||||
|
|
||||||
|
# SPEC-071: BKDL (Binary Manifest) types
|
||||||
|
const
|
||||||
|
BKDL_MAGIC* = 0x4E585553'u32 # "NXUS" (little-endian)
|
||||||
|
BKDL_VERSION* = 1'u16
|
||||||
|
|
||||||
|
type
|
||||||
|
BkdlHeader* {.packed.} = object
|
||||||
|
magic*: uint32
|
||||||
|
version*: uint16
|
||||||
|
flags*: uint16
|
||||||
|
signature*: array[64, uint8] # Ed25519 (unchecked in dev mode)
|
||||||
|
pubkey_hash*: array[32, uint8] # SHA-256 of signing key
|
||||||
|
cap_count*: uint16
|
||||||
|
blob_size*: uint32
|
||||||
|
entry_point*: uint64 # 0 = use ELF e_entry
|
||||||
|
|
||||||
|
CapDescriptor* {.packed.} = object
|
||||||
|
cap_type*: uint8 # CapType enum value
|
||||||
|
perms*: uint8 # Permission bitmask
|
||||||
|
reserved*: uint16 # Alignment padding
|
||||||
|
resource_id*: uint64 # SipHash of resource name
|
||||||
|
|
||||||
|
ManifestResult* = object
|
||||||
|
header*: ptr BkdlHeader
|
||||||
|
caps*: ptr UncheckedArray[CapDescriptor]
|
||||||
|
count*: int
|
||||||
|
|
|
||||||
|
|
@ -34,6 +34,11 @@ proc kprint(s: cstring) {.importc, cdecl.}
|
||||||
proc kprint_hex(v: uint64) {.importc, cdecl.}
|
proc kprint_hex(v: uint64) {.importc, cdecl.}
|
||||||
proc get_now_ns(): uint64 {.importc: "rumpk_timer_now_ns", cdecl.}
|
proc get_now_ns(): uint64 {.importc: "rumpk_timer_now_ns", cdecl.}
|
||||||
|
|
||||||
|
# Project LibWeb: LWF Adapter (Zig FFI)
|
||||||
|
proc lwf_validate(data: pointer, len: uint16): uint8 {.importc, cdecl.}
|
||||||
|
|
||||||
|
const ETHERTYPE_LWF = 0x4C57'u16 # "LW" — Libertaria Wire Frame
|
||||||
|
|
||||||
# Membrane Infrastructure (LwIP Glue)
|
# Membrane Infrastructure (LwIP Glue)
|
||||||
proc membrane_init*() {.importc, cdecl.}
|
proc membrane_init*() {.importc, cdecl.}
|
||||||
proc pump_membrane_stack*() {.importc, cdecl.}
|
proc pump_membrane_stack*() {.importc, cdecl.}
|
||||||
|
|
@ -73,6 +78,11 @@ proc netswitch_process_packet(pkt: IonPacket): bool =
|
||||||
|
|
||||||
case etype:
|
case etype:
|
||||||
of 0x0800, 0x0806, 0x86DD: # IPv4, ARP, IPv6
|
of 0x0800, 0x0806, 0x86DD: # IPv4, ARP, IPv6
|
||||||
|
# NOTE(LibWeb): IPv6 is the first-class citizen for sovereign mesh.
|
||||||
|
# Most chapter nodes sit behind consumer NAT — IPv6 provides
|
||||||
|
# end-to-end addressability without traversal hacks.
|
||||||
|
# IPv4 is the fallback, not the default. Membrane/Transport
|
||||||
|
# layer enforces preference order (IPv6 → IPv4).
|
||||||
# Route to Legacy/LwIP Membrane
|
# Route to Legacy/LwIP Membrane
|
||||||
if not chan_net_rx.send(pkt):
|
if not chan_net_rx.send(pkt):
|
||||||
# Ring full (Backpressure)
|
# Ring full (Backpressure)
|
||||||
|
|
@ -86,6 +96,21 @@ proc netswitch_process_packet(pkt: IonPacket): bool =
|
||||||
ion_free(pkt)
|
ion_free(pkt)
|
||||||
return true # Handled (dropped)
|
return true # Handled (dropped)
|
||||||
|
|
||||||
|
of ETHERTYPE_LWF: # Project LibWeb: Libertaria Wire Frame
|
||||||
|
# Validate LWF magic before routing (Fast Drop)
|
||||||
|
let lwf_data = cast[pointer](cast[uint64](pkt.data) + 14) # Skip Eth header
|
||||||
|
let lwf_len = if pkt.len > 14: uint16(pkt.len - 14) else: 0'u16
|
||||||
|
if lwf_len >= 88 and lwf_validate(lwf_data, lwf_len) == 1:
|
||||||
|
# Valid LWF — route to dedicated LWF channel
|
||||||
|
if not chan_lwf_rx.send(pkt):
|
||||||
|
ion_free(pkt) # Backpressure
|
||||||
|
return false
|
||||||
|
return true
|
||||||
|
else:
|
||||||
|
# Invalid LWF frame — drop
|
||||||
|
ion_free(pkt)
|
||||||
|
return false
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Drop unknown EtherTypes (Security/Sovereignty)
|
# Drop unknown EtherTypes (Security/Sovereignty)
|
||||||
ion_free(pkt)
|
ion_free(pkt)
|
||||||
|
|
@ -116,7 +141,7 @@ proc fiber_netswitch_entry*() {.cdecl.} =
|
||||||
rx_activity = true
|
rx_activity = true
|
||||||
inc rx_count
|
inc rx_count
|
||||||
|
|
||||||
# 3. TX PATH: Userland -> Hardware
|
# 3. TX PATH: Userland -> Hardware (Legacy/LwIP)
|
||||||
var tx_pkt: IonPacket
|
var tx_pkt: IonPacket
|
||||||
while chan_net_tx.recv(tx_pkt):
|
while chan_net_tx.recv(tx_pkt):
|
||||||
if tx_pkt.data != nil and tx_pkt.len > 0:
|
if tx_pkt.data != nil and tx_pkt.len > 0:
|
||||||
|
|
@ -125,6 +150,15 @@ proc fiber_netswitch_entry*() {.cdecl.} =
|
||||||
ion_free(tx_pkt)
|
ion_free(tx_pkt)
|
||||||
tx_activity = true
|
tx_activity = true
|
||||||
|
|
||||||
|
# 3b. TX PATH: LWF Egress (Project LibWeb)
|
||||||
|
var lwf_pkt: IonPacket
|
||||||
|
while chan_lwf_tx.recv(lwf_pkt):
|
||||||
|
if lwf_pkt.data != nil and lwf_pkt.len > 0:
|
||||||
|
virtio_net_send(cast[pointer](lwf_pkt.data), uint32(lwf_pkt.len))
|
||||||
|
inc tx_count
|
||||||
|
ion_free(lwf_pkt)
|
||||||
|
tx_activity = true
|
||||||
|
|
||||||
# 4. Periodically print stats
|
# 4. Periodically print stats
|
||||||
let now = get_now_ns()
|
let now = get_now_ns()
|
||||||
if now - last_stat_print > 5000000000'u64: # 5 seconds
|
if now - last_stat_print > 5000000000'u64: # 5 seconds
|
||||||
|
|
|
||||||
|
|
@ -161,6 +161,24 @@ proc emit_access_denied*(
|
||||||
0, 0
|
0, 0
|
||||||
)
|
)
|
||||||
|
|
||||||
|
proc emit_policy_violation*(
|
||||||
|
fiber_id: uint64,
|
||||||
|
budget_ns: uint64,
|
||||||
|
actual_ns: uint64,
|
||||||
|
violation_count: uint32,
|
||||||
|
cause_id: uint64 = 0
|
||||||
|
): uint64 {.exportc, cdecl.} =
|
||||||
|
## Emit budget violation event to STL (The Ratchet, M4.5)
|
||||||
|
return stl_emit(
|
||||||
|
uint16(EvPolicyViolation),
|
||||||
|
fiber_id,
|
||||||
|
budget_ns,
|
||||||
|
cause_id,
|
||||||
|
actual_ns,
|
||||||
|
uint64(violation_count),
|
||||||
|
0
|
||||||
|
)
|
||||||
|
|
||||||
## Initialization
|
## Initialization
|
||||||
proc init_stl_subsystem*() =
|
proc init_stl_subsystem*() =
|
||||||
## Initialize the STL subsystem (call from kmain)
|
## Initialize the STL subsystem (call from kmain)
|
||||||
|
|
|
||||||
|
|
@ -175,11 +175,18 @@ proc pty_write_slave*(fd: int, data: ptr byte, len: int): int {.exportc, cdecl.}
|
||||||
if ring_push(pty.slave_to_master, pty.stm_head, pty.stm_tail, b):
|
if ring_push(pty.slave_to_master, pty.stm_head, pty.stm_tail, b):
|
||||||
written += 1
|
written += 1
|
||||||
|
|
||||||
|
# Mirror to UART console
|
||||||
|
var c_buf: array[2, char]
|
||||||
|
c_buf[0] = char(b)
|
||||||
|
c_buf[1] = '\0'
|
||||||
|
kprint(cast[cstring](addr c_buf[0]))
|
||||||
|
|
||||||
# Also render to FB terminal
|
# Also render to FB terminal
|
||||||
term_putc(char(b))
|
term_putc(char(b))
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
# Render frame after batch write
|
# Render frame after batch write
|
||||||
if written > 0:
|
if written > 0:
|
||||||
term_render()
|
term_render()
|
||||||
|
|
|
||||||
|
|
@ -42,6 +42,18 @@ import fiber
|
||||||
# We need access to `current_fiber` (from fiber.nim) and `get_now_ns` (helper).
|
# We need access to `current_fiber` (from fiber.nim) and `get_now_ns` (helper).
|
||||||
|
|
||||||
proc sched_get_now_ns*(): uint64 {.importc: "rumpk_timer_now_ns", cdecl.}
|
proc sched_get_now_ns*(): uint64 {.importc: "rumpk_timer_now_ns", cdecl.}
|
||||||
|
proc console_write(p: pointer, len: csize_t) {.importc: "hal_console_write", cdecl.}
|
||||||
|
proc uart_print_hex(v: uint64) {.importc: "uart_print_hex", cdecl.}
|
||||||
|
proc uart_print_hex8(v: uint8) {.importc: "uart_print_hex8", cdecl.}
|
||||||
|
|
||||||
|
# M4.5: STL emission for budget violations (The Ratchet)
|
||||||
|
proc emit_policy_violation*(fiber_id, budget_ns, actual_ns: uint64,
|
||||||
|
violation_count: uint32, cause_id: uint64): uint64 {.importc, cdecl.}
|
||||||
|
|
||||||
|
# Forward declaration — implementation is in THE RATCHET section below
|
||||||
|
proc sched_analyze_burst*(f: ptr FiberObject, burst_ns: uint64)
|
||||||
|
|
||||||
|
var photon_idx, matter_idx, gravity_idx, void_idx: int
|
||||||
|
|
||||||
# Forward declaration for channel data check (provided by kernel/channels)
|
# Forward declaration for channel data check (provided by kernel/channels)
|
||||||
proc fiber_can_run_on_channels*(id: uint64, mask: uint64): bool {.importc, cdecl.}
|
proc fiber_can_run_on_channels*(id: uint64, mask: uint64): bool {.importc, cdecl.}
|
||||||
|
|
@ -63,11 +75,17 @@ proc sched_tick_spectrum*(fibers: openArray[ptr FiberObject]): bool =
|
||||||
# Phase 1: PHOTON (Hard Real-Time / Hardware Driven)
|
# Phase 1: PHOTON (Hard Real-Time / Hardware Driven)
|
||||||
# =========================================================
|
# =========================================================
|
||||||
var run_photon = false
|
var run_photon = false
|
||||||
for f in fibers:
|
for i in 0..<fibers.len:
|
||||||
|
let idx = (photon_idx + i) mod fibers.len
|
||||||
|
let f = fibers[idx]
|
||||||
if f != nil and f.getSpectrum() == Spectrum.Photon:
|
if f != nil and f.getSpectrum() == Spectrum.Photon:
|
||||||
if is_runnable(f, now):
|
if is_runnable(f, now):
|
||||||
if f != current_fiber:
|
if f != current_fiber:
|
||||||
switch(f); return true
|
photon_idx = (idx + 1) mod fibers.len
|
||||||
|
let t0 = sched_get_now_ns()
|
||||||
|
switch(f)
|
||||||
|
sched_analyze_burst(f, sched_get_now_ns() - t0)
|
||||||
|
return true
|
||||||
else:
|
else:
|
||||||
run_photon = true
|
run_photon = true
|
||||||
if run_photon: return true
|
if run_photon: return true
|
||||||
|
|
@ -76,11 +94,17 @@ proc sched_tick_spectrum*(fibers: openArray[ptr FiberObject]): bool =
|
||||||
# Phase 2: MATTER (Interactive / Latency Sensitive)
|
# Phase 2: MATTER (Interactive / Latency Sensitive)
|
||||||
# =========================================================
|
# =========================================================
|
||||||
var run_matter = false
|
var run_matter = false
|
||||||
for f in fibers:
|
for i in 0..<fibers.len:
|
||||||
|
let idx = (matter_idx + i) mod fibers.len
|
||||||
|
let f = fibers[idx]
|
||||||
if f != nil and f.getSpectrum() == Spectrum.Matter:
|
if f != nil and f.getSpectrum() == Spectrum.Matter:
|
||||||
if is_runnable(f, now):
|
if is_runnable(f, now):
|
||||||
if f != current_fiber:
|
if f != current_fiber:
|
||||||
switch(f); return true
|
matter_idx = (idx + 1) mod fibers.len
|
||||||
|
let t0 = sched_get_now_ns()
|
||||||
|
switch(f)
|
||||||
|
sched_analyze_burst(f, sched_get_now_ns() - t0)
|
||||||
|
return true
|
||||||
else:
|
else:
|
||||||
run_matter = true
|
run_matter = true
|
||||||
if run_matter: return true
|
if run_matter: return true
|
||||||
|
|
@ -89,11 +113,17 @@ proc sched_tick_spectrum*(fibers: openArray[ptr FiberObject]): bool =
|
||||||
# Phase 3: GRAVITY (Throughput / Background)
|
# Phase 3: GRAVITY (Throughput / Background)
|
||||||
# =========================================================
|
# =========================================================
|
||||||
var run_gravity = false
|
var run_gravity = false
|
||||||
for f in fibers:
|
for i in 0..<fibers.len:
|
||||||
|
let idx = (gravity_idx + i) mod fibers.len
|
||||||
|
let f = fibers[idx]
|
||||||
if f != nil and f.getSpectrum() == Spectrum.Gravity:
|
if f != nil and f.getSpectrum() == Spectrum.Gravity:
|
||||||
if is_runnable(f, now):
|
if is_runnable(f, now):
|
||||||
if f != current_fiber:
|
if f != current_fiber:
|
||||||
switch(f); return true
|
gravity_idx = (idx + 1) mod fibers.len
|
||||||
|
let t0 = sched_get_now_ns()
|
||||||
|
switch(f)
|
||||||
|
sched_analyze_burst(f, sched_get_now_ns() - t0)
|
||||||
|
return true
|
||||||
else:
|
else:
|
||||||
run_gravity = true
|
run_gravity = true
|
||||||
if run_gravity: return true
|
if run_gravity: return true
|
||||||
|
|
@ -101,11 +131,16 @@ proc sched_tick_spectrum*(fibers: openArray[ptr FiberObject]): bool =
|
||||||
# =========================================================
|
# =========================================================
|
||||||
# Phase 4: VOID (Scavenger)
|
# Phase 4: VOID (Scavenger)
|
||||||
# =========================================================
|
# =========================================================
|
||||||
for f in fibers:
|
for i in 0..<fibers.len:
|
||||||
|
let idx = (void_idx + i) mod fibers.len
|
||||||
|
let f = fibers[idx]
|
||||||
if f != nil and f.getSpectrum() == Spectrum.Void:
|
if f != nil and f.getSpectrum() == Spectrum.Void:
|
||||||
if is_runnable(f, now):
|
if is_runnable(f, now):
|
||||||
if f != current_fiber:
|
if f != current_fiber:
|
||||||
|
void_idx = (idx + 1) mod fibers.len
|
||||||
|
let t0 = sched_get_now_ns()
|
||||||
switch(f)
|
switch(f)
|
||||||
|
sched_analyze_burst(f, sched_get_now_ns() - t0)
|
||||||
return true
|
return true
|
||||||
else:
|
else:
|
||||||
return true
|
return true
|
||||||
|
|
@ -128,10 +163,20 @@ proc sched_get_next_wakeup*(fibers: openArray[ptr FiberObject]): uint64 =
|
||||||
return min_wakeup
|
return min_wakeup
|
||||||
|
|
||||||
# =========================================================
|
# =========================================================
|
||||||
# THE RATCHET (Post-Execution Analysis)
|
# M4.5: Budget Defaults Per Spectrum Tier
|
||||||
# =========================================================
|
# =========================================================
|
||||||
|
|
||||||
proc console_write(p: pointer, len: csize_t) {.importc, cdecl.}
|
proc default_budget_for_spectrum*(s: Spectrum): uint64 =
|
||||||
|
## Return the default budget_ns for a given Spectrum tier
|
||||||
|
case s
|
||||||
|
of Spectrum.Photon: return 2_000_000'u64 # 2ms — hard real-time
|
||||||
|
of Spectrum.Matter: return 10_000_000'u64 # 10ms — interactive
|
||||||
|
of Spectrum.Gravity: return 50_000_000'u64 # 50ms — batch
|
||||||
|
of Spectrum.Void: return 0'u64 # unlimited — scavenger
|
||||||
|
|
||||||
|
# =========================================================
|
||||||
|
# THE RATCHET (Post-Execution Analysis)
|
||||||
|
# =========================================================
|
||||||
|
|
||||||
proc sched_log(msg: string) =
|
proc sched_log(msg: string) =
|
||||||
if msg.len > 0:
|
if msg.len > 0:
|
||||||
|
|
@ -169,7 +214,16 @@ proc sched_analyze_burst*(f: ptr FiberObject, burst_ns: uint64) =
|
||||||
# Budget enforcement
|
# Budget enforcement
|
||||||
if f.budget_ns > 0 and burst_ns > f.budget_ns:
|
if f.budget_ns > 0 and burst_ns > f.budget_ns:
|
||||||
f.violations += 1
|
f.violations += 1
|
||||||
console_write(cstring("[Ratchet] Violation: fiber exceeded budget\n"), 42)
|
discard emit_policy_violation(f.id, f.budget_ns, burst_ns, f.violations, 0)
|
||||||
|
console_write(cstring("[Ratchet] Budget violation fiber=0x"), 33)
|
||||||
|
uart_print_hex(f.id)
|
||||||
|
console_write(cstring(" burst="), 7)
|
||||||
|
uart_print_hex(burst_ns)
|
||||||
|
console_write(cstring(" budget="), 8)
|
||||||
|
uart_print_hex(f.budget_ns)
|
||||||
|
console_write(cstring(" strikes="), 9)
|
||||||
|
uart_print_hex(uint64(f.violations))
|
||||||
|
console_write(cstring("\n"), 1)
|
||||||
|
|
||||||
if f.violations >= 3:
|
if f.violations >= 3:
|
||||||
sched_demote(f)
|
sched_demote(f)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue